
,E.TT.O. .OForm Aoved
J1ENTATION PAGE OM0704-01882 rveage 1 hour per resporse. Inckudn te time for reviewing intrclons, eearcirg existing data eources gatherng and mintairg the data

i-arding this burden eatimate or any other aspect of t:' collection of information, Inckdng suggestione for reducing thi burden, to WastdntgonA D -A 242 09 ,~ 1215 Jefferson Davt Highrway, Suite 1204.Atno VA 2220-4302. and to the OMice ot information and Regulry Affairs. Offic cit

2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

SEPTEMBER 1991 Final: 11-13 SEPTEMBER 1991

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

SIXTH ANNUAL ASEET SYMPOSIUM PROCEEDINGS

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

INSTITUTE FOR DEFENSE ANALYSES (IDA)
1801 N. BEAUREGARD ST.

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY

Ada Joint Program Office REPORT NUMBER

The Pentagon, Rm. 3E114
Washington, D.C.

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

UNCLASSIFIED - UNLIMITED PUBLIC DISTRIBUTION

13. ABSTRACT (Maximum 200 words)

THE PROCEEDINGS CONSISTS OF THE FOLLOWING PAPERS: UNDERGRADUATE SOFTWARE ENGINEERING
COURSES: MEETING THE NEEDS OF INDUSTRY; USING ADA TO TEACH CONCURRENCY; LESSONS LEARNED
IN THE ADA TRAINING PROGRAMS AT ROCKWELL; THE ADA APPRENTICE; A SEQUENCE OF FRESHMAN LEVEL
INTEGRATED LABORATORY ASSIGNMENTS; A TOOL SUPPORTING PROGRAMMING IN THE LARGE FOR THE
INTRODUCTORY SOFTWARE DEVELOPMENT COURSES; A TOP-DOWN TOOLBOX APPROACH TO TEACHING
THE ADA PROGRAMMING LANGUAGE; AND USING A LANGUAGE SENSITIVE EDITOR AND ADA IN COMPUTER
SCIENCE I-Il

14 SUBJECT TERMS 15. NUMBER OF PAGES

ADA, EDUCATION, TRAINING, CONCURRENCY, SOFTWARE ENGINEERING, 108

COMPUTER PROGRAMMING LANGUAGE 16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED NONE

NSN 7540-01-280-550 Standard Form 298, (Rev. 2-89)
Prescribed by ANSI Std. 239-128

Y P ItI"r .

P Lr 0)c e (e d 'L 1
CLEARED

OT2 1991]-2

Alexandria, Virginia =
11- 13 September 199 1

A forum sponsored by the Ada Software Engineering Education and
Training (ASEET) Team

• - / -'

AJDA IF0IPWA1RIE

Sponsored by:

Ada Software Engineering Education and Training Team

and

Ada Joint Program Office

t

Institute for Defense Analyses
Alexandria, VA

The views and opinions herein are those of the
authors. Unless specifically stated to the contrary,
they do not represent official positions of the authors'
employers, the Ada Software Engineering Education
and Training Team, the Ada Joint Program Office, or
the Department of Defense.

ii

ASEET TEAM MEMBERSHIP
1 September 1991

Eugene Bingue Captain Joyce Jenkins
1942 Comm Sq/LGN HQ SCCC/IIAIT
Homestead AFB, FL 33039-6346 Offutt AFB, NE 68123-5001

1LT Sandra Chandler Ms. Pam Kimminau
Software Engineering Training Branch 9800 Savage Road
3390 TCHTGrITMKPP Ft. Meade, MD 20755-6000
Keesler AFB, Mississippi 39534-5000

LtCol Pat Lawlis
Captain David A. Cook AFIT/ENG
Department of Computer Science Wright Patterson AFB, Ohio 45433
U.S. Air Force Academy, CO 80840

Ms. Cathy McDonald
Major Tom Croak nstitute for Defense Analyses
HQ USAF/SCXS 1801 N. Beauregard Street
Washington, D.C. 20330-519 Alexandria, VA 22311

Major Chris Demery LCdr Lindy Moran
Ada Joint Program Office PACOPSUPPFAC
Room 3El14 Box 9
The Pentagon Pearl Harbor, HI 96860-7150
Washington, D.C. 20301-3081

Major John Myer
Mr. Leslie W. Dupaix Computer Science
USAF Software Technology Support Center U.S. Naval Academy
OO-ALC/TISAC Annapolis, MD 21401
Hill AFB, Utah 84056

Prof. E.K. Park
Major Drew HamiltonAttn: ATZH-SSW Assist. Professor
Software Engineering Branch Computer Sr '.Ence (M.S. 9F)
USA Computer Science School U.S. Nava' Academy
Fort Gordon, GA 30905 Annapolis, MD 21402

Captain Mike Helsabeck Captain Michael Simpson
1500 CSGPIEN CTS/RMC
Scott AFB, IL 62225 Lackland AFB, Texas 78236-5000

Major J. J. Spegele
Captain Dan Herod USMC
HQ ATC/SCDBT Marine Corps Support Activity
Randolph AFB, Texas 78150 1500 East 95th Street

ATT: Code TY
Kansas City, Missouri 64197-0501)

iii

Major David Umphress
HQ SCCCYIIAT
Offutt AFB, NE 68113

Capt David Vega
Det 1, 3390 TCHTG
45335 Vintage Park Plaza
Sterling, VA 22170-6701

Capt Pat Wicker
SCCC/XPTSE
Offitt AFB
Omaha, NE 68113

iv

TABLE OF CONTENTS

Message from Symposium Chair .. 1

Thursday, September 12, 1991

Undergraduate Software Engineering Courses: Meeting the Needs
of Industry, Barbara Hilden and Bruce Johnston 3

Using Ada to Teach Concurrency, Robert A. Willis, Jr 9

Lessons Learned in the Ada Training Programs at Rockwell,
Mary Kathleen Cook and William D. Baumert 23

Friday, September 13, 1991

The Ada Apprentice, Urban A. LeJeune .. 37

A Sequence of Freshman Level Integrated Laboratory Assignments,
John Beidler .. 49

Educational Significance of a Declarative Ada Dialect, Paul A. Bailes,
Dan Johnston, Eric Salzman, and Li Wang 61

A Tool Supporting Programming in the Large for the Introductory
Software Development Courses, Jaime Nino and Howard Evans 75

A Top-Down Toolbox Approach to Teaching the Ada Programming
Language, Thomas B. Hilburn and Iraj Hirmanpour 83

Using A Language Sensitive Editor and Ada in Computer Science I-I1,
Dr. Dennis S. M artin ... 97

v

This Page Intentionally Left Blank

vi

Message From The Symposium Chair

Ms. Catherine W. McDonald

It gives me great please to welcome all of you to the Sixth Annual ASEET
Symposium. The Team is very excited about this year's symposium and its theme: Ada as
an Educational Tool: The Time is Now. Over the past 12 months, the Ada Joint Program
Office has received numerous requests for training in Ada. Truly, the time is now for all
educators to push Ada in their Services, organizations,and universities.

This year, despite the short time span between the Call for Papers and the
submission date, we received numerous papers. All the papers were excellent and the final
decision of the reviewers was not easy. I hope you find the papers and the panels this year
stimulating and thought provoking. Hopefully, the symposium will provide you with the
opportunity to interact and exchange ideas with other educators and trainers.

I would also like to take this opportunity to thank all the attendees for their support
of the ASEET Team and its activities. If you have any questions about the team, please feel
free to ask one of the Team members during the symposium (easily recognized by the green
ribbon attached to their name tags).

Again, welcome and thank you.

1I

This Page Intentionally Left Blank

2

6TH ASEET SYMPOSIUM
11-13 SEPTEMBER, 1991

UNDERGRADUATE SOFTWARE ENGINEERING COURSES:
MEETING THE NEEDS OF INDUSTRY

Barbara Hilden
Bruce Johnston

Mathematics Department
University of Wisconsin-Stout

Menomonie, WI 54751

Introduction

Most software development projects undertaken at the undergraduate college level are, by
necessity, designed to be accomplished by one or a few students in the course of a single
academic term. Moreover, the software is seldom used once the development is completed.
This contrasts with the vast majority of industrial software which is complex, developed by large
teams of people and must be maintained for several years.

Another contrast with industrial software development is that the requirements for most college
software development projects are provided to the student by the faculty. One of the more
formidable tasks in industrial software development is the development of the requirements
through extensive negotiation and coordination with the end user or customer. These
differences result in many computer science graduates having difficulty participating effectively
in large scale industrial software development. Since the skills needed to be effective in this
environment are primarily acquired on the job, a profound productivity lapse occurs. This
shortcoming needs to be addressed at the academic level.

The lack of software engineering principles in early courses is one of the major problems of the
Computer Science curriculum as a whole (Werth, 1988). Specifically software engineering
principles and skills can not be acquired in a one term Software Engineering class. This is
especially true when the students must "unlearn" the development style that was used in their
previous classes.

Software Engineering courses have several shortcomings which lead to the overall problem of
unskilled Software Engineers. Project teams of three to four students often develop small, throw
away software. Most of the requirements for this software are supplied by the instructor and
have little or no real-world application. While attempting to get beyond disposable software,
most Software Engineering courses fall short. There is little or no configuration management
or quality assurance in the projects completed in Software Engineering courses. Additionally,
software evaluation is rarely completed adequately, if at all. Finally, students have little idea of
the maintenance phase of the software life cycle since this is routinely ignoied in Software
Engineering courses. Time constraints in a one term Software Engineering course are the
biggest contributor to most of these problems.

Possible Steps Toward a Solution

Software Development Studio Environment (Tomayko, 1991)

The software development atmosphere, as suggested by Tomayko, requires students to
participate in a 12-16 month software development project conducted in a studio type
environment. Students within this environment produce software that is to be delivered to a
customer with whom they are in contact. Several faculty members act as an interim review
team, as well as coaches for individual students. This 12-6 month commitment allows students
sufficient time for a complete pass through the sof ware life cycle but demands considerable
amounts of faculty involvement.

This approach was used successfully at Carngie Mellon University. However, potential
problems include the availability of an industrial project and the time and eff t required of the
faculty. Faculty of smaller universities are often required to teach a full 12 credit load with ,ittlc
or no release time for additional time commitments, which would be required to implement the
Tomayko environment. Finally, the necessary restructuring of student class schedules to
accommodate *he time commitment is also a concern.

Ore semester Software Maintenance Course (Engle, et al 1989)

The one semester Software Maintenance course is based on the use of a predefined software
artifa.t (10,000 - 20,000 lines). Exercises would be included focusing on the topics of
configuration management, regression testing, code reviews and stepwise abstraction. The
Documented Ada Style Checker (DASC) is available for such use through the SEI Education
Program. The package includes the DASC in many forms, including a PC version using the
Meridian AdaVantage compiler, student exercises and instructions for both students and
instructors. This package can be used during a one semester maintenance course, or parts of
the package can be used during a Software Engi-ieering course. Although the maintenance
course would be of great help in meeting the industry's need for qualified Software Engineers,
it is felt that the magnitude of the project wold be difficult for undergraduate students to
handle in the typical Computer Science curriculum.

Variations of Existing Software Engineering Courses

One variation of the exi3ting Software Engineering courses would be the incorporation of a 3-4
week maintenance phase at the end of a one semester Software Engineering course. This
approach has been used once at the University of Wisconsin-Stout during the Spring 1990
semester. The project was a computerized math quiz bowl system that had to be completed in
time for use at a conference during the first week of April. This left over three weeks for
evaluation and feedback from the customer and subsequent modifications of the system.
Although the student participation in the maintenance activities was i:,structive, too many other
important topics that are usually covered had to be omitted in order to deliver the project on
time. Overall, a recommendation of this approach for a one semester project-oriented Software
Engineering course can not be given.

The idea of enhancing existing software is, however, well worth some additional thought so a
two course series is being implemented. The first semester will be the creation of a software

4

system from the ground up, going through the software life cycle excluding the maintenance
phase. The second course will add enhancements to the software written in the first course.
One problem to be addressed is that the courses need to be independent, in that students could
take the first without immediately following with the second. Careful consideration of this and
thorough documentation should alleviate this concern. This method is being adopted for the
Fall and Spring semesters of the 1991-92 academic year at the University of Wisconsin-Stout.

More Extensive Use of Industrial Internship Experiences

Many Computer Science programs have found it beneficial for their students to participate in
an industrial internship/co-op experience some time during their degree program. Internship
experiences have been successfully incorporated into the Software Development concentrations
of the Applied Mathematics Degree program at the University of Wisconsin-Stout. Table 1
shows some typical degree programs focusing on sequencing of the Computer Science courses
relative to the internship experiences. These case studies illustrate the broad spectrum of degree
programs over the past several years.

During the past 10 years, the industrial internship has evolved to become an important
component of the degree program at the University of Wisconsin-Stout. While it is not currently
a degree requirement, nearly 85% of the students participate in at least one internship. Over
half of the students complete two or more such internships. This industrial experience keeps
the placement rate for Stout graduates consistently above 95%. However, most students need
9-10 semesters to complete their degree program. In addition, missing part of an academic year
while on an internship can cause problems with fall/spring sequence courses.

Perhaps the biggest benefit of internship experience is the dramatic change in the students'
attitudes. Most students return to their Computer Science course work with a higher degree
of interest and enthusiasm. Participation in a real-world software development project gives a
clearer perspective on professional software engineering. Specifically, students understand the
need for the following:

* an organized and disciplined approach to software development,
* good written and oral communications skills,
• accurate, complete, and current software documentation.

Although the quality of the software engineering practices at the individual internship sites
varies considerably, students come to appreciate the need for an organized and disciplined
software engineering methodology.

Internship experiences are useful in several other ways for both students and employers. The
students get an opportunity to "test-drive" a job and make sure that this is the right career for
them. Specifically, it helps students more precisely define what type of software development
they want to pursue for a career. Those students who have had internship experiences in
several different areas or for very different types of corporations are typically more specific
about what type of software development position they want following graduation. For this
reason, the Computer Science faculty generally encourages students to do several different types
of internship experiences. However, occasionally an internship experience will convince a
student that they are not cut out for a software development career and they subsequently
change majors.

5

Table 1. Case Studies of Student Internship Experiences

CASE STUDY #1 (8 semesters)

YaI7 iFall Spring Summer

84-85 Computer Science I Computer Science II

85-86 Assembly Lang Prog IBM-San Jose

86-87 Data Structures Cobol Programming IBM-Rochester

87-88 Computer Organization Systems Programming
Software Engineering

JOB: IBM, Rochester, MN

CASE STUDY #2 (9 semesters)

Year Fall Spring Summer

85-86 Computer Science I Computer Science II

86-87 Assembly Lang Prog Data Structures IBM-San Jose

87-88 IBM-San Jose IBM-Boca Raton

88-89 Computer Organization Systems Programming
Computer Graphics

89-90 Software Engineering

JOB: IBM, Gaithersburg, MD

CASE STUDY #3 (10 semesters)

Year Fall Spring Summer

84-85 Computer Science I Computer Science II

85-86 Assembly Lang Prog IBM-Owego
Data Structures

86-87 Computer Graphics Image Processing Cray Research

87-88 Cray Research Cobol Programming

88-89 Computer Organization Systems Programming
Software Engineering

JOB: XonTech, Van Nuys, CA

6

Industrial experiences are also beneficial for employers in several ways. First, they allow
employers to test the software development skills and ability of students before offering them
a full time position. This is particularly important for students whose professional ability is not
always correlated with their college GPA. Most of the internship experiences are long enough
that students can become sufficiently involved in a project to do a significant amount of
productive work. However, an internship coordinator must be careful to avoid internships that
degenerate into clerical type positions. On the other extreme, internships used as a cheap way
to get around a company wide hiring freeze for full-time positions should also be avoided.

Undergraduate Degree in Software Engineering (Ford, 1991)

The undergraduate degree in Software Engineering, as described by Ford, involves an
engineering approach to the entire curriculum. The proposed curriculum consists of courses
which cover many of the same topics that are covered in Computer Science curricula today, but
with more of an engineering structure added. A stronger engineering design component is
provided in the form of two one-year project courses. This gives students the opportunity for
two complete passes through the software life cycle. This proposed curriculum is viewed by the
authors of this paper as an important complement to the traditional Computer Science
curriculum. However, adoption of this approach will take a significant amount of work since
its course structure, while still covering similar topics, is different from most Computer Science
curricula.

Application of Suggested Solutions at University of Wisconsin-Stout

Being a small university, University of Wisconsin-Stout Computer Science faculty were able to
agree on necessary changes to incorporate a compromise of these suggestions. It was
determined that Software Engineering principles, including maintenance, need to be introduced
as early as possible into the students' course work. Therefore, adaptation of a Software
Engineering structure throughout all Computer Science courses is being implemented. The
introduction of the second Software Engineering course will allow for one complete pass
through the software life cycle at the academic level thus encompassing portions of Tomayko's
studio environment. The continued encouragement of industrial internships addresses the real-
world porticn of the studio environment while complementing the controlled academic
atmosphere. It is not felt that the solution adapted at University of Wisconsin-Stout is the final
answer to improved Software Engineering education but it is a step in the right direction.

Summary and Conclusions

In recent years it has become increasingly apparent that Software Engineering is becoming a
well defined distinct subset of Computer Science. It is hoped that continued discussions of these
ideas and others will eventually lead to strong undergraduate curriculums that meet the
Software Engineering needs of industry.

7

REFERENCES

Ford, Gary, 1991: 'The SEI Undergraduate Curriculum in Software Engineering", In Proceedings
of the n SIGCSE Technical Symposium on Computer Science Education, SIGCSE Bulletin
23 1 (March 1991). ACM SIGCSE, Washington, D. C., 375-385.

Engle, Charles B., Jr., and Gary Ford, 1990: "Software Maintenance Exercises for a Software
Engineering Project Course", In Proceedings of the Fifth Annual Ada Software
Engineering Education and Training Symposium, AJPO, 3-9.

Tomayko, James E., 'Teaching Software Development in a Studio Environment", In Proceedings
of the 22nd SIGCSE Technical Symposium on Computer Science Education, SIGCSE
Bulletin 23 1 (March 1991). ACM SIGCSE, Washington, D. C., 300-303

Werth, Laurie Honour, 1988: "Integrating Software Engineering into an Intermediate
Programming Class", In Proceedings of the 20th SIGCSE Technical Symposium on
Computer Science Education, SIGCSE Bulletin 20 1 (February 1988). ACM SIGCSE,
Washington, D. C., 54-58.

8

Ada and Concwrrency in the Classroom

Using Ada To Teach Concurrency

Robert A. Willis Jr.
Hampton University
Department of Computer Science
Hampton, VA 23668

willis@willis.hamptonu.edu

9

Introduction
This paper discusses experiences found in teaching an upper-level topics course in concurrency.
The course builds upon the introduction to concurrency our students are exposed to in Operating
Systems I, canvasses a number of concurrent programming models, and looks at important issues
concerning concurrent programming. Ada is used extensively throughout the course to simulate
symmetric processing and basic synchronization primitives, as a medium to view several conc'.ur-
rent notations, and as a means to perform new and challenging concurrent programming exercises.

Course Structure
A large portion (30%) of the course is concerned with a Survey of Concurrent Processing.[l] [2]
We discuss specification notations and synchronization primitives based on shared variables and
message passing. A discussion of two or three concurrent programming models usually follows.
We also look at one concurrent programming language (in addition to Ada). Finally, we look at
some of the limitations of different communication methods, anomaly detection, and methods to
analyze concurrent programs.

Why Ada?
Ada is one of the few languages which has safe and general concurrent features. These features are
not experimental, they conform to the same consistent philosophy of block-structuring, strong typ-
ing, and sound software design principles found throughout Ada, and they are unambiguously
specified. These are not features which were grafted onto a programming language, but rather de-
signed as an integral part of Ada. Therefore, their syntax and usage is regular and consistent with
all other features found in the language. Since Ada is a general purpose programming language, it
is quite easy to integrate concurrent and sequential processing into a program allowing one to de-
velop programs with a rational balance of concurrency as needed.

Ada is particularly well adapted to concurrent program design and development because the mod-
ularity of its tasking mechanism supports object oriented design (OOD) quite well. OOD is a tool
students have found very helpful in alleviating the complexity that often accompanies concurrent
programming.

Ada and Concurrency in the Classroom
Ada as an expository tool

Ada's concurrent features can be used to simulate coroutines quite easily. They can simulate and
demonstrate other programming notations features such as the fork/join and cobegin/coend con-
struct. All of the synchronization primitives based on shared variables (busy-waitin , semaphores,
conditional critical regions, monitors, and path expressions) can also be simulated. This allows
the student to actually see how these constructs work and learn their relative advantages and dis-

1. Simulations can be implemented to various degrees of faithfulness. I recommend implementing only those
features which are relevant to a good understanding of the construct. I did not, for instance, implement con-
ditional wait for monitors.

10

advantages without having to learn different programming languages. Mini-programming exercis-
zs can be assigned to illustrate salient features or deficiencies. A sampling of classroom uses will
be discussed in the following sections.

Coroutines

Coroutines are the classic example of symmetric concurrency and are included in some languages
because of their simplicity and power to provide solutions for a large class of concurrent problems.
They are not an effective construct for use in a multiprocessor implementation because only one
routine is executing at a time. The programmer must also completely specify all process switch-
ing. [2] This last requirement adds to the complexity of a concurrent program and, as such, is not
desirable.

Coroutines are a form of subprogram which have multiple entries and exits. Threads of execution
are produced by each coroutine explicitly relinquishing control to another coroutine and pausing
in its execution until invoked by a resume statement in another coroutine, at which time execution
is continued with the statement following the coroutine call. The following figure illustrates the
operation of coroutines.

FIGURE 1. Coroutine Operation

A B C

resumeB; 44 r,3.....
resumeum B;esm

resume B.u ste.6 The pot a
s.. temen

resume C; deasumert A

begin -- Main
call C;

end Main;

Simulating coroutines in Ada is uncomplicated. A pair of simple rendezvous statements are used
to simulate the coroutine resume statement. The pair consists of an entry call to another task (sim-ulated coroutine) immediately followed by an accept statement. The accept statement is used to ex-plicitly halt execution of the calling task thereby simulating the implicit semantics of the resume
statement.
The following program serves as an simple example. Each task has a resume entry declarationwhich can be used as many times as necessary. Note that, with the exception of the last statementin task CoroutineA, each invocation of another coroutine is in the form of an entry call/accept state-

ment pair simulating true coroutine semantics. This exception is necessary to allow task (and there-
fore program) termination.

11

Using this mechanism a number of exercises can be assigned which will afford the student the "es-
sence" of coroutine programming.

FIGURE 2. Coroutine Implementation

wn* Te.u-0. an TezaIO. twk body C==Wg=aeA w tsk ody CWWaMB as

N~sziajE mua l~u~ 5; beg.
awep ooesmq .eMAM

msk CmmeUA is . fw lid a L..,.M ao wp for r isdez a I ,Ma Lim_.Ow 6Wop

wy ZItnum P*UL C"imag8 CoomumaA; 2 OP PimJLim ("Rumag C,, vwB");

"d -"wasA. sd loop; cod loo;

task ama B ma ,.,€ , RKanam. - Esimai t lt" - Crot mm ;

awry 3 * bo ladsfo a l a. maaa.u _ OVA k 4 for ld, im I -Mxaa Lj _O loop
md cmaU6911 Pkxuija Clot an~g of CmawnmeA"; PWaLMe

,-.'oo. M(2Ad rm-8 ad CQMwMre):
I *CBe.m end loop.

md CMeAl4 d C=OmuB;

begd -Cc'ouimen

Fork/Join statements

Fork statements provide a low level (low level from the standpoint that these statements may be
interspersed within program control statements), powerful, and general means of producing two
concurrent threads of execution.[5] Join statements are used to unite two concurrent threads of ex-
ecution. They are powerful constructs which can be used to model any process flow graph. A pro-
cess flow graph illustrates the precedence constraints that occur within a concurrent program. [6]
The following figure shows a code sequence, its process flow graph, and corresponding fork/join
sequence.

FIGURE 3. Fork/Join

U:= A *B; Countl:= 2;.I Fork Process-2;

V:= C /B; - Count.:= 3:

W:= E + F; Fork Pnocs_4;

X:= W + V; '--4- :lForkProcess_5;
SV:= C / B; Join Count I, Process_3; Quit.

Y:= G** H; Procss_2:W:=E+ F;

Z:= X *Y *U; Join Counti. Process3U oaQut;
Process_3: X:= W + V;

Join Count2. Protess6;
X Quit;

ProceS_4: U:= A * B.
Join Couni2. Process_6;
Quit;

Z ProcessS: Y:= G 00 H;
Join Count2, Procesi_6;
Quit;

)D Process_6: Z:= X * Y * U;

12

Implementation of the Fork statement in Ada is in the form of an entry (Fork) in any task(s) with
which concurrent execution is required. Implementation of the join statement is more involved, it
is necessary to declare a task type which contains an parameterized entry (Initialize). The paramne-
ters consist of the count and a pointer to the task which will execute next. The count is decremented
at each Join rendezvous and control passes to the next task when the count reaches zero. A Join
task must be instantiated for each count variable. The following Ada program simulates the process
graph and Fork and Join statement sequence given above:
FIGURE 4. Fork/Join Implementation

with Tew_10 a&boyP, i

III -a)- PaoinNw_Type;
A. Inerrm 5; - Vaw Itd coded
B: Intepe,.6; ni rcs
Q Iwym 7; ma"Iiilz

. 6wearw I. (h..esNOm: a in Nam..p) dD
F- Iswear 9. P TOOID. -rNom;
G: ImVwx3; an W-itten*

U. V. W. X. Y. Z. hpr. wee Fork

pcbee Is-10 is no Text-1O1ateM-1O (Isepe): wit ootwe-II) in
type k NwwType in (PI, P2. P3. P4. PS, 106); - Used for WAk uLstfiao two PI 0 V. C / B;

took type P in wstma P2 -o W.- E. F:
Cooy Initialize (Ptoc-NUN: ia Pocwanw-meypey: COAmlia:

Cor Fork: when P3 xo Xx W + V:
cod Poams;Caas2-Joia:

uwe P4 U- A - B;
typ P~ -Pmuwis warn Peina Cmnaa2Joes:
Proomi1. P _I Procam_3, Prowua.A. wh~en PS Y. G (- H;
Proomaj.. Prowwn6: Pmj aPoiamr. CQOua2jmn:

when P6 Z.L- X * Y * U:
to nd e3aak is Tezt JaPa C~e anser ir.~)

INgJO.Pw ML).
- ImtalimeI~ 1kcve dNwbe of lee, dw counter uss o dowin m Tt=JO.New-tiae
- when to aan to the wiat prwo. al" recver a poite to dbe cod ame;
- wit prvne to mamne. cad Ptmu

enty troualan (Nurober_0(_Foeks: in Posiive;
NetaTask.P NonN.or); e -FokJi

emy JawA -I.-w Procter; lunmue enlach
aJoiS-Task;A -~o2.- new Ptceja

P 3i. new Prawn;
CountI 1, Qnt2: 3m.Taak; P 4.-4 mew Pe ;

ROM-5 ew Pews.:
taak bodiy ioajak is Po 6:. mew Pewass

P, I.litialize (Pl); - Give each pato it 4d
MaxCaant Positive; - Used to WMq on& ofjoi 3Jowto aaz MP);

III 4itiaizis (P4);
hap. - Jiti Tak P 3."Aalize (PS)

W-1-6-iaz (NutoberOf Piks: is Positive: Al _i6tlai (P6);
NenJad Prome-Pwer) do Cou@41. Initiaizne (2. P _3Y:- Isa a jasLok

NMax-Caxi NutaO-Fok: h IJ.FC1*4
Ne-Pan= Nmjmk;* Pei 2.Fork:

la nSalim: CauWel laisalias (3. Ptm 6);,
for Coan to I -Max-Cmarn loop ws4.Ftwk;

weep Join; -- Suawsd Joa timin Jen..Fok:
en War. snd Fork-Join;
Nem-Pro.Fort - Earn men wi

MWd J..STusk

Using task types and pointers (access types), a relatively simple program is written. Use of the case
statement within the Process task type further simplifies the program This statement allows the use
of a task type (instead of six tasks) to implement the concurrent statements. Each process is access-
ed through the use of its variable (pointer variable) and its identification determines which state-
ments it executes. This model can be given to students and various exercises assigned which
illustrate the power, as well as the difficulty, of using the Fork/Join constructs.

13

Semaphores

Semaphores are a well known general purpose construct used to solve synchronization problems. Tra-
ditional semaphores are nonnegative integer variables V (s) and P (s). We can define these operations
as follows:[6]

• V (s): Increment s by 1 In a single Indivisible action-

* P (s): Decrement s by 1, if possible. If s = 0, then It is not possible to decrement s and still remain In the domain of nonnegate
Integers, the process invoking the P operation then waits until It Is possible. The successful testing and decrementing of s art
also an Indivisible operation.

FIGURE 5. Semaphore Implementation: Code and Process Graph

(a + b) a (c + d) - (e f) S

tl:=a + b

t2:= c +d t3

t3:= e / f

t4:= t1 * t2

t5:= 4 - t3

FIGURE 6. Semaphore Implementation: Ada Code [8]

wih Te-IO, use Tes- 10; task body Seww t task body For is
p-wu. Eqtw. ,a bes - Smophre b'. - Few

ioo Seml.wai
-- PROGRAMMER: unes L . sel" Sefl.Witd:

SSisal; T4m TI T4
A; coeam Imqar 2; aces Wait: Sem4isaIl;
B coeseern 3: or cud Fmr
C: coDat 1wqae,- 4: wflht:5w.
D: comam loqas I; sad sele; tusk body Five im
E: coesutim las= 2; endb b-is - Fite
F: wm al.aseser. 2; cod Sewehmp; Sem3.Wag

SeM4.wui
psckp ImO is mw IsI0i (aqif); Luk body Ow is TS. T4 - "3;
umntasO:. be& -mO PW (TA

TIm A + B: cd Rv;
TI. T. T3. T4. TS: IW Sml.s ip);

md On bog- - Eqjaio
tak Ow; iask Two; Wll;
task fIlrm: tuk Few. tk bdy Two a md Equammo
task Ftw; best - Two

T2:= C#M;

ask 17ve Seupite is Sem2Siei;
eyS-68

-
; md Two:

,my Wai
emd Semepbi; tak body Three t

beps - Tbeve
Seml, senz Sew. S4: serm; T m ElF:

Saodia;

An Ada simulation need not concern itself with the counters because any invoking process waits (if
necessary) on a P or V operation when attempting a rendezvous with the semaphore. This implemen-
tation is effective, simple, and models semaphore semantics quite well. The implementation uses sig-

14

nal and wait for P (s) and V (s), respectively. In this exercise students were required to decide how
many semaphores were necessary and implement the process graph depicted in figure 5. More dif-
ficult exercises can be assigned as required.

Monitors

A monitor is another well known mechanism for synchronization control. The simplest form of a
monitor restricts access to the data structure through a set of operations and use of the monitor to
one process at a time. This form of monitor is used quite extensively in concurrent Ada programs
and is sufficient to provide a basic "feel" for their usage. True monitors [7] can also be implement-
ed but these implementations (at least all of the methods we have attempted, so far) are quite con-
voluted and tend to hinder rather than aid the process of understanding.

Figure 7 contains an implementation of the basic monitor model. This monitor controls all access
to a game board which contains n warship tasks and m mines. The warships can fire rounds, move
to another location, be hit by unfriendly fire, and sink. To do any of these things a warship must
make a request and/or report to the game monitor. The monitor effectively maintains the integrity
of the resource (the game board).

Path Expressions

Path Expressions "provide a mechanism with which a programmer specifies, in one place in each
module, all constraints on the execution of operations defined by that module".[2] Additionally the
compiler generates code to enforce these constraints. Path expressions can be defined as fol-
lows:[6]

A path expression has the form: path restriction.expression end where restriction expression is defined recursively as follows:

1. A procedure name P is a restriction-expression; by itself, a single procedure name implies no restriction.

2. If PI and P2 am restriction.expressions, then each of the following is also a restricion-expression:

P1, P2 denotes concurrent execution. No restriction is imposed on the order In which P1 and P2 are invoked or in the number
of concurrent Invocations.

P1; P2 denotes sequential execution. One invocation of Pi must complete before each invocation of P2. The execution of P2 in
no way Inhibits the Initiation of Pl; thus many different Invocation of Pi and P2 may be active concurrently, as long as the
number of P2's that have begun execution is less than the number of Pl's that have completed.

n:(PI) denotes resource deresriction. It allows at most n separate invocations of P1 to coexist simultaneously.

[PI] denotes resource derestriction. It allows an arbitrary number of Invocations of P) to coexist simultaneously.

The operators can be combined to express flexible and powerful constraints in concise notation.
Implementation of path expressions in Ada can be problematic. The ideal situation would be to
have a path expression parser. The parser would decipher the path expression and schedule the
tasks as necessary. Alternatively a path expression can be given to students for conversion to Ada.
The problem with the latter approach is that the constraints are no longer automatically enforced.
Figure 8c indicates that more complicated constraints can be converted using a manager task to en-
sure that the constraints are met. If a certain pattern is to be reused often, it can be encapsulated in
a package.

15

FIGURE 7. Monitor Implementation [9]

- Phann : Shmn What. aop Luniite aaipIhv - u SIupID ype;
- Ti is& aseMn r Roaw, Cobwans e as e) do

-k it - - oiti for co 6*6aan pam, play actviy. It prerides loop - Gond lga comaiewna to plaow the sip~ in
- anl mo to the Game Board through Sbot Mome Ismaliet. &Wd Rassim (R. MAXIMUM-ROWSk

- NANOa fadltam. Random (C MAXIUMI_4COLS).
task a m-onae isi Gamew.)omd (. C) - NoSbap then

- Inganhae giesn th Shp (ThsipD) two lga coomdiae an the ezal. - leave loop when leta oocthnae Found

- Sam bout end if.
ow 10F

esory lajankan (TiSbiID i uSldp-ID-Type; Gaieoard (R. C);- ThisSipD.
ROW. CObAL- Ca IegOW) Ruvn k. Calussaw C;

- Moe" moes a hp ftonts camnea pnin, meaw ponnion. it the end Initialize:
- shippa blocked by aohe abap the advaag shi or

- accept Muve MhwasbipD an SlD-mType;
mary Move (ThsShi0D- in Ship-M-Type; FPeotow. Feomomntns.

Fromow. 'mo~oluit.Toltow. ToCobIunw in ilega.

Taon'., ToColunam is imee VuLidlow. VaidCokL=s: ot anege) do
Valid!Ron. VaLidCoume a iwelga). if (GameBosrd (ToRow. ToCokuna) = NaShip) or

- Shoot fima a a the gie@ row sad column in the awe beard. Sho.es (Gaiow-Bod (TRoow. ToColms) - SlapC) then
- we ekamruznd in than is addition to dhe Largie tow and colum., blocks Ge._Boad (ProtRow. FrmoColwa) NoShip;
- ajacen to the taret are we alo it"% - If so oppinag ship in path. moe wo new p ols

ValidRow:x ToRow; - Validat New oeiae

may Sheet (Sia. in ShipID _Type; Valkd~ums.-wToColuon;
Row. C',loam an Inteser)r if Gwvmoned (ToRow. ToCckaa) a StipK the

-Santa resume the cusrent status at Thin..SbipMDCalling Ok. Dead. IN Win Ship~its (This-ShiptD)m- H%.

else
esoy Staus CbaShipa in ShpjDTp Gunnefloud (Taon'w. ToColams)m Tlmipll),I

Row,. Col-ann i Integer and if;

Redt xatt: oat Stoa-Type); de - opposngshaip was found
endj GarMoi VaiiRow:= Frotow; - pow a arw position

ValidColiumsm FrosColm.;
task body Game..Mosuscr is end if..

type Boned.Type is end Move;
hrny (0-MAXIMUM-ROWS. 0..MAXIMUM-COLS) of Ship-D.Type; or

GameBcoud: Scud-Type; - the play sean accep Shoot (ShipID: in ShipjfDype; Row. Colune: in Integer) do
Shipffits: ay (Ship L.Shi6) of Inaner.- A(0.0.,0.0. ft. for i in L 3 loop - use close"bn effect
L. C. Ri. Cj. Miwe.Row. Mine-Colun. Deadhis Intnu forj isn i

3
loop

- Ri. Wrap (('-2).+ Row. MAXIMUM-LIM)
- The Wrap Function daasgea the Game Board ina Torus end prevents C. Wrap ((j.2) + Colums,. MAXIMUMlLI?49Th;

- csenas crews. Slap leavg the bnadarms of the board are if (Gameflmd (Ri. C)) /- NoShip) and
- essored to ponston on the other inade of the game board (Game..Bcud (RU C))A- ShipC) then

- ~ShipHita (Game-Board (Ri. C)):=
funiuon Wra (i: ieee Lossa.integer) return unyeg ws ShipHits (Gam-oard (Ri. Cj)). - 1

if Ship~is (Garme.Baud (11. Qi)
-i <- Honizontal cc VeaiacaJ Positio MAXImuMwlITS th"

Umia <- Mautrm value wehida A/ musjt sever readi Gar=Board (Ri. C):. NoShip;
- Note: The Mintowot value for A is ma unimd to be 0. end if.

end if-,
Resuk: inaeger- saw loop

end loop;
began end Sboes;

if i).- lim thes - eleknpeboundary or
Resultm i - Unit; - mrew on Inwea aide of game board accep Statim (This-ShipID: in ShipjD.Type;

cladf i <C then - cwk lower boundary Row. Column: in Integer. RetSmu: out Siamijype) do
Resu:. Uno . i; - metia on -~ aide of gamebow if Ship~Ih (flaia.Ship(D) >-' MAXIMUM-HITS then

elan Rei~alusn Dead;
Result- i; - if legal valae. modify nothing dew - check for win awe

end it. DawdShip:,0,

rown Resub: for i in Slipl.Ship6 loop
end Wrap; if i M' Tbia.ShipID thsen

if Shipiis() - MAXIMUMITS then
begin - Game Moitor DeadShip.: DendSip - ;

-Place 10 Moam in the Play Arew end if;
end if-,

foctiin I 10 loop and loop;
loop - Make Sure we Sot a lgal posnm (sot overwrines) if (Sb p~fita(ThaShIuPD) < MAXIMUM-HITS) ad

Rean (fie-Ron'. MAXIMUM-ROWS); (DendShipe - MAXIMUM-SHIPS- l) them
Randomt (Mier Coluit.. MAXIMUM.XOLS); RetStature Win;
if Ge-Boned (Maw-Row. Mine-Coun.) a NoShip the else - if we havenet won and we aren't dead. we're Ok

exit, - leve when we ind legal coodiaes RetkmSta. Ok
endl if: end if;

end loop; end if;
- Place the mne end San.u;
GawmBoud (Mine.Row. MmneColurne)w- tIupK; or

eod loop: tertwine: - Ibaa maw that the other proce terlanninnd.
end Selem;

- Gam Event Loop end loop:

loop end Gamte-Moa;
.w

16

FIGURE & Path Expression Templates

- path I:(T1), 2) end -pwbrleTd -T;ccdh .Cm(C.m2: (c17 :). , awI M)

- Maximum of one TI and T2 9 T , i tkcTI is

-can operate concurrently. endTI e- l;-,bS

procedure Concurrent is
taskT1; tak 2,. .NA Zis

task T2; -ad --tamwqc 7

uk body TI is i uk Mmfa i
Tb body is * -Ti - Mna"a im tespasale for Onrag to

loop - TI aed T2. A smi imm d Cou2 tevon
aa f d T! nd Cauam3 mieocemam of" 2m

-00P Sam*; - t oeed Y N n = Iog so aa

end TI; - C "*wI Mal "muim i e
arm aite eovy F -TI:

OWd loop; emy Ff 'r2:

T2 body is Maage.

end Tlt.ak body T1 i. - Opaw a isnksbegi.- T12

end T2; . *_end 2; ied- zroceiow cl'T] md 72 am mule dwmmlh the

oDq S tmWp; - unam g . They mm be ma e Jim bee or btba
- Oapiol ,tl.

begin - Concurrent U,-W; W MmCylic"d;

null; cad loop;

end Concurrent;
end T2:

begin - Seqcuntial
FWr Cotrin L10 loop

tl.slamt,

FIGURE Sa t2.swaF
Cal IOV-cad loop";

end Seopenual;

FIGURE 8b FIGURE &c

Ada for programming exercises

A wide range of programming exercises can be assigned. The difference in programnng ex-,
ercises and expository assignments is that programs are completely specified real-world prob-
lems which are amenable to concurrent solutions. The student is required to design and
implement his solution from the specification and is not restricted to one model or rnotation.
Simulations and real-time problems are but a few possibilities. Students gain invaluable expe-
rience in concurrent program design and development.

Roller Coaster [101 (Simulation)

Suppose there are n passenger and m (m > 1) car process. The passengers repeatedly wait to take
rides in the cars, which can hold C passengers, C < n. Iowever, the cars can go around the tracks
only when they are full. Since there is only one track, cars cannot pass each other; i.e., they must
finish going around the track in the order in which they started. Write a program which implements
this. Use message passing for communication. Assume there will be 1058 passengers. Use five
cars.

This is an excellent middle level program. It requires the various tasks to interact in a non-trivial
manner, yet it will not overwhelm the student. A typical (if sparse) design may be as follows.

17

FIGURE 9. Roller Coaster Design

GeneratePassengers Roller_Coaster

F for Index In PaxRange loop 1 Make queue of Max-Cars, giving each car a unique ID;

I Rollero_Caster.GetPax; Count:= 0;
| Randomt_Delay; |loop

end loop; loop
RollerCoasterNo-_Passengers; select

I I accept Get_Pax;

Car TaskCount:= Count + 1;
CarTaskif Count = Max-Pax then

loop fDequeue (ACar, Queue);
lect ACar.StartUp; Count:= 0;

select end if;

accept Get *ID (ID: Integer) do or

My_ld:= ID; accept Done;
end GetID; Enqueue (DoneCar, Queue);

or or

accept Startup; accept No-Passengers;
Del'.y (TripTime); while Cars are still out loop;
if not RollerCoaster.Terminated accept Done;
then end loop;

RollerCoaster. Done (Myld); Shut_Down:= true; exit;
end if; end select;

or end loop;
terminate; If ShutDown then exit

end loop; end loop;

Although this design may seem to be simplistic, students typically have some difficulty arriving at
this stage. For most of them it is their first time actually designing and implementing a concurrent
program and defining the interfaces is not trivial. However, once they work through early mistakes,
most of them produce very good programs. Most problems occur in visualizing the necessary in-
teractions between the objects. Students are so used to sequential programming that they have a
difficult time realizing that rendezvous' are not procedure calls. The various tasks are really exe-
cuting concurrently. The earlier models/primitives mask this somewhat, because of the low-level
coding required to implement concurrency in a program (seml.wait; sem2.signal; ; seml.sig-
nal; sem2.wait). Using message passing eliminates the need for this low level coding, but requires
thinking about concurrent programs differently, especially when the responsibility for program de-
sign, as well as implementation, is the student's responsibility.

Mongulator (Real-Time Programming)

Mongulator (a nonsense name) was originally conceived as a simple real time program. It turned
out to be quite difficult for the students. The original specifications (which follow) were not ade-
quate and we had to discuss them quite thoroughly throughout the development process. They also
required subsequent modification. It was deemed acceptable to accept some trashing, but each as-
sembly line was still required to contain the intelligence to determine its speed.

1. A factory has 4 assembly lines. Each line produces a part required to produce the Mongulator. The following list Indicates the
maximum speed in which the respective lines can produce its component.

Line A: 0.5 seconds

Line B: 0.25 seconds

18

Line C: 0.33 seconds

Line D: 047 seconds
2. Each line deiveti its pat to a collector. The line can no(wait more than 0.05 seconds for a delivry to be made. If a delivery can not

be made then It is trashed. Records must be maintained of the number of lost parts.
3. The collector accepts the components is somec order every 0.5 seconds and forwattds a complete coUletlon to the assembler. The col-

lector only waits 0.005 seconds to collect a component from each assembly line. The collector has the luxury of buffering two incom-
plete collections.

4. The assembler assembles a collection In 0.5 seconds. It can also buaffer oecollection while assembling anotr.
S. Write a program which minimizes or eliminates trashing.

In a real factory the speed of the assembly lines vanies. Suppose each line starts at its maximum speed. If It senses that it is going too
fast, then it slows itself. If it senses that it is going too slow, it attempts to speed up (its maximum value can not be exceeded.
We should never tash.....

What this program reaffirmed to both the instructor and students is that real-time programming is
at least one degree of difficulty above "ordinary" concurrent programming. Careful design and a
thorough understanding of the specifications is mandatory. Extreme care must be taken to imple-
ment the design with accuracy. Testing of the programn must also be thorough and good fault iso-
lation skills are required to correct problems.

After completing this or a similar project, students have the basic tools and understanding to begin
more serious real-time projects.

FIGURE 10. Mongulator.Ada program fragments

task Opening-.For..The-Day; bceis - Uuc.Typ begia - Collectm

task Collector, acept rmkiai (14 i mQ..,seie- loop
Tine. i Duration; fir Cause.a.' loop

task Assembler is Pament-irw. Foat) do seec
entry Assemble_*aM, Uae-& id. Snd. iou useUc~ou PRecwd;

end Assembler TnwbMwai Pace .Eaw -fBmt.~ Ew~y them

task type Line-.Type is ca htalize; Bia(I. Cot.). Count:

entry Inlitialize (Id: in character, delay (Speed);- patis beking wc Bia CMxUO. Cam:
ime: in duration; Moe Made . 1; ca t

PercentError: in Float); selecto
entry Part. Received; acte iIanRenved; - waiting fortbe line to debwa. 4 po

or delay (ColledtiaLDeay);
entry Update; delay (Paus); Tmdi= Trks. +: 1;ed aelect;
entry Closing-ime of en oop:

(Percent: out Float; vUpdate; Scd(t) -Tnuc.
LnieouDuain rsm100.00 * (Float(truhl) Seed(2):= Tue.
Line~~lime: ouFuain lM(Mdc)): Fa X~ in loop

Pause_.Tirm: out Duration); i rw>TImelLMWSg thee For Y in WaV loop
enid Line-ype; Patise:- poso + Tit-ace - Cb&to seif bia full

end if-,it Bn (X. Y) - Emptxy tbes

Ln:aryr..fofU _Tp;TotaalMalc. Total-jtade. + Mde Sead(X)m False;
Lin: a~ayCa.d)Of rie.Tye;Total malt:- ToaLTrsAb + Trken cif.,

Madem- 0, Tub. 0 and loop;
or - Ifull bissend to ascadilc

sori Clostal-Tinte (ProoL "i leai if SeadmX thesl
t.Uee-ree: ow Dtai: AmWje. Asen~tePut;

Task OpeningFor.The-.Day Psewinw: mout uioo)do Fcc Zis'adloop
Pccceatm I00LD Bin(X.Z): Eioptr
Flosi(TotLTmal) / FlCortal-Me). sad loop:
Lee Ticm Speed; Fame Tm.:-m Puue end if;
saw clbmsiex cud loop;

cad select cod lomp;
sad loop; sand Uas.Tps; and Coetor

Task Type Line-Type Task Collector

Due to the complicated nature of the program only task specifications and fragments for two tasks
are shown in figure 10.

The tasks conform to the following descriptions:

19

1. Task OpeningForTbeDay

Opering_ForThe_Day gets the percent of trash error for the day and passes it each line along with the line's Identification and pro-
duction speed.

2. Task Type LineType

LineType Is a task type that represents an assembly line in the "factory" A task of this type will make a part at the speed given to It
by the OpeningForTheDay task. It will then pause and wait for the collector to pick up the part on a default interval of 0.05 sec-
onds. If the part is not collected it is added to the trash. When the assembler signals, the line will compute its trash ratio and if it is
higher than the given trash margin it will attempt to slow itself by adding to the amount of time It will wait for the collector to collect
a part.

3. Task Collector

Collector collects the parts from each line. It will place the part in one of two bins unless the pan is already in the bin. If the pan is in
the bin then the collector "lets the part fall on the floor." If one of the bins is full then the collector "sends" it to the assembler. If the
collector finds a line is not ready to deliver its component, It will wait 0.05 seconds before moving on to the next line.

4. Task Assembler

Assembler "assembles" the parts "collected" from the Collector task at a rate of 0.5. It will also prompt the lines to update every time
it assembles 20 parts, and when it has assembled 10,000 parts it will prompt the lines to report its final results and quit for the day.
The assembler will also prompt the collector to quit when it has assembled 10,000 parts.

The program fragments and task descriptions indicate an OOD approach to solving the problem.
Each task or task type is treated as an object. The external interfaces were decided and the internal
processing of each object were then designed and implemented. Ada's modular tasking mechanism
decreased the complexity of the problem significantly.

Nothing is Perfect
Simulation

While Ada's concurrency mechanisms allow us to "simulate" many of the primitive synchro-
nization constructs and concurrency models, it must be emphasized to the students that these
simulations are not perfect and are primarily used to allow them to become familiar with the
advantages and disadvantages of each construct and model. When used in this manner, simu-
lation can have a big pay off in the classroom.

Information Hiding

One problem, which needs to be addressed, occurs when the implementation details of the sim-
ulation are not encapsulated in packages. If the details are incorporated directly in the their pro-
grams (as in all of the examples in this paper), some students will assume that semaphores (or
some other structure) are naturally built using rendezvous' and require tasks with entry calls,
etc. Therefore, instructors must be careful to distinguish between the implementation of the
simulation and the use of the construct. While it is more awkward (and less instructive) to pro-
vide the constructs through Ada packages (thus hiding implementation), some confusion may
be alleviated.

Parametized Initialization

Not having the ability to initialize Ada tasks through parameters is an irritant. Additional en-
tries have to be included in each task to acquire identification and start-up information.

Troublesome Select Statement

Students must be cognizant of problems which can occur if tasks are symmetrical [I I] and con-

20

ditional entry calls are utilized. More generally, most of the objections discussed by Gehani and
Cargill are pitfalls which students should know about.

Conclusions
Ada is an excellent language to use as an expository tool. It can be used to allow students to effec-
tively write programs using the programming notations and synchronization primitives normally
taught in beginning Operating Systems and Concurrency classes. It is an invaluable tool, in that,
students can concentrate on learning the advantages and disadvantages of each construct through
practical experience, as well as classroom discourse. Instructors can provide students with example
implementations and tailor exercises to fit the needs of the class.

4'1

References

[1] Gehani, N. and McGettrick, A., Concurrent Programming, Addison-
Wesley, 1988.

[2] Andrews, G.R. and Schneider, F., Concepts and Notations for Concur-
rent Programming, ACM Computing Surveys, 1983.

[3] Willis, R. and Morell, L., Intelligent Abstract Data Types and Be-
yond, to appear.

[4] Sebesta, R., Concepts of Programming Languages, Benjamin Cum-
mings, 1989.

[5] Peterson, J. and Silbershatz, A., Operating System Concepts, Addison
Wesley, 1985.

[6] Bic, L. and Shaw, A., The Logical Design of Operating Systems, Pren-
tice Hall, 1988.

[7] Hoare, C. A. R., Monitors: An Operating System Structuring Con-
cept, Communications of the ACM, 17 (10), 549-557.

[8] Irvin, J., Semaphores.Ada, Hampton University CSC 395, Spring 1991.

[9] White, S., WarShip.ada, Hampton University CSC 395, Spring 1991.

[10] Andrews, G. R., Concurrent Programming: Principles and Practice,
Benjamin/Cummings, 1991

[11] Gehani, N. H., Cargill, T. A., Concurrent Programming in the Ada
Language: The Polling Bias, Software: Practice and Experience, 14
(5), 413-427, John Wiley and Sons, Ltd.

22

Lessons Learned in the Ada Training Programs at Rockwell

Mary Kathleen (Kt) Cook
William D. Baumert

July 1991

Collins Commercial Avionics
Rockwell International

Cedar Rapids, Iowa

INTRODUCTION. Collins Commercial Avionics, and Collins Avionics and
Communications Division, Rockwell International, in Cedar Rapids, Iowa, have long
recognized the need to provide continuing education opportunities for their employees.
Software is a prominent part of the company's products. Thus, in order to maintain a
competitive edge and to prevent erosion of technical competence, an extensive educational
program has been determined to be imperative. In order to focus on the educational needs of
Rockwell employees, there are several such training programs underway. This paper focuses
on Ada training in Cedar Rapids, and the "lessons learned" along the way.

OVERVIEW

BACKGROUND. Both software engineering and Ada training have been heavily emphasized
since before 1987. In 1987, a formal Software Engineering Training Program (SETP) was
established to address the need for a more complete software engineering education program
for Collins engineers. For FY91, this program features around 30 courses offered on a
continuing basis, with other "short courses" offered on a more limited schedule.

One portion of the SETP courses is the Ada training block. The Ada courses were introduced
specifically to begin to meet the demand to utilize Ada in accordance with Department of
Defense requirements. Ada was also chosen to be the vehicle for illustration of the software
engineering principles and goals. These have included such courses as Ada for Managers,
Principles of Design, Ada Specific Design Issues, Ada Coding Issues, and Advanced Ada, in
addition to several short courses. The number of hours required to complete one of these
courses ranges from 4 to 80. More than 700 participants have been involved with the Ada
training program as of September 1990.

23

FACILITIES. Education facilities were built to accomodate these courses. An education
building housing several training rooms was established. One room is equipped with
terminals and ports allowing each participant to have access to a Digital Equipment
Corporation VAX cluster and specifically to Ada compilers. Another room has been
equipped with video equipment so that many of the courses may be taped while being offered
live. Another classroom is furnished with video equipment to facilitate courses obtained
through satellite down-links, or for the self-paced viewing of pre-recorded lectures.
Additional training rooms are available in this building as well as throughout the Rockwell
complex. Off-site facilities have also been used on occasion.

TRAINING ASPECTS. The training program itself is extremely dynamic. The nature of
training demands that we always seek to improve existing materials, and to add, modify, or
delete courses as our needs and technology changes. There are two key factors to
maintaining a quality training program. First, it is necessary to identify areas of success and to
continue in them. Secondly, the identification of problem or challenge areas, and finding
resolutions is vital. The management of these challenge areas not only keeps the classes
interesting and current, but effective as well.

AREAS OF SUCCESS

It is interesting that each of our areas of success has also been a challenge area in many ways,
and it is difficult to separate the two categories.

WORKSHOPS. One activity that has proven to be invaluable to our Ada courses is the
inclusion of group workshops or projects. These exercises are sprinkled throughout the
courses and between every major topic.

It is no surprise that the majority of learning actually takes place in these workshops and not in
the standard lecture time. In the design and coding classes at least 50% of the students' time is
spent on group projects. The first couple of workshops are very brief, taking only about 30
minutes. As the courses progress, the exercises become more substantial, taking up to two or
three class periods to prepare and present. Our group projects offer several positive
experiences in addition to simply reinforcing the material presented in lectures.

There are three phases of each Ada design workshop exercise. First, groups are chosen and
then meet together and design a specified system. Then several of the groups present their
designs in a more formal setting before the whole class. Following these presentations,
everyone participates in a thorough design review.

It is extremely helpful for the members to learn to work in-the-large with all other members
of the class in groups that change from one workshop to the next. Furthermore, the whole

24

experience of working in teams seems to add to the classroom environment of cooperation,
and sometimes competition, making the course far more interesting and more beneficial
overall, than standard lectures. Over and over again, we have seen this team spirit motivate
groups to go to great lengths to produce amazingly complete, professional looking designs for
class presentations. Data Flow Diagrams and other materials from SA/SD, Control Flow
Diagrams, Object Oriented Designs, and other areas beyond the scope of the class have made
their way into group designs. This not only demonstrates the level of group enthusiasm that
these teams seem to generate, but also attests to the influence of the entire Software
Engineering Training Program on the general level of skills and awareness throughout the
company.

All class members are strongly encouraged (or else are 'chosen to volunteer') to present
workshop produced designs in front of the larger group. This practice helps to turn a rather
intimidating activity into a routine skill with much less personal sensitivity and pressure. It is
most encouraging to see all members of the class become able to make a formal design
presentation in a fairly non-threatening environment.

The emphasis on reviews brings the goals and principles of software engineering together
with direct practical applications for improving designs and the design process. As these
workshop reviews evolve, the level of communication and constructive criticism goes up
dramatically. In turn, the quality of the completed designs also improves dramatically. Even
the quality of the presentation itself often goes well beyond the workshop requirements,
involving extensive use of outside tools, formal graphical representations and laser printed
design packets. The final workshop for the Design With Ada class has evolved into a very
elaborate project not because we have changed the requirements, but primarily because the
students themselves have produced increasingly complete designs in order to pass the scrutiny
of peer reviews. For this reason, it was recently factored out into a course of its own to allow
for the extra time and to encourage that level of effort.

TEAM-TEACHING. The team teaching approach has contributed to the success of the Ada
training program. By having two or more instructors teaching each of the major Ada courses
we are able to divide the materials and specialize on certain topics. There is always someone
else in the room able to verify or look up answers to student questions that may not otherwise
be possible during lecture time. Having backup instructors prevents us from ever having
to cancel a class due to unforseen instructor absences. We have had a nice mix of experience
and training/education between the various instructors who come from different
departments, divisions, and projects throughout Rockwell. This has enhanced our collective
credibility in many different ways.

An important facet of team teaching at Rockwell involves treating the class as a total concept
and not just a set of disjoint ideas, days, chapters, concepts, etc. Instructors do not simply
show up for 'their chapters' or 'their days' and teach. There has to be a continuity and
consistency between all class concepts. Everything must fit into a total picture for the class to

25

make sense. For this reason all instructors are capable of teaching any unit of a given class,
and new instructors will usually sit through at least two or three offerings before they begin to
take on a lead instructor role.

To some extent, this emphasis on continuity even overlaps between different classes. The
instructor must be most familiar with the concepts taught in the prerequisite courses, and how
topics will be dealt with in subsequent classes. References are often made to exercises and
concepts covered in prerequisite courses. Again, everything must fit into a consistent total
picture.

CHALLENGE AREAS

We continue to address challenging issues in the training efforts. These issues can be roughly
grouped into two main categories: General Education Issues, and Software Engineering and
Ada Industry Specific Issues.

GENERAL EDUCATION CHALLENGES

First, within the General Education area, we continually address the various difficulties that
are inherent to any kind of training in general.

" Management Support
* Motivation
" Classroom atmosphere
* Variance of participant's backgrounds
" Cost and sources of training
* Timing and scheduling

* Staffing

Although some of these may seem like secondary concerns in the Ada arena, they are
nonetheless very real, and contribute vastly to the success or failure of any training program.
in any discipline.

MANAGEMENT SUPPORT. The past (and often present) attitude toward industry training
in general has been that although everyone agrees on the value of trained people, it is not
"real work" and has been paid little more than lip service when it comes to investing and
committing skilled designers and engineers to a lengthy training program. As B. Boehm
stated in Software Engineering Economics, "training and human relations activities provide
by far the largest source of opportunity for improving software development and
productivity." And as K. Blanchard and S. Johnson pointed out in The One Minute Manager,
"It's ironic... Most companies spend 50% to 70% of their money on people's salaries. And yet

26

they spend less than 1% of their budget to train their people. Most companies, in fact, spend
more time and money on maintaining their buildings and equipment than they do on
maintaining and developing people."

Rockwell has demonstrated its committment to training. Managers, of course, are equally
frustrated with the state of software development, and are seeking for understanding and
solutions to the dilemma. Over the past several years we have definitely progressed from the
"What are we going to do about this 'Ada thing"' stage, to a high level of management
awareness, and more importantly, involvement.. We have hardware organizations, software
organizations, and systems organizations. Members of these organizations are now assigned
to all sized projects. There are more and more managers at Rockwell that have come from a
predominately software background, which also represents progress in a traditionally
hardware intensive company. We have offered a class entitled Ada for Technical Managers
that addressed the specifics of both software engineering and Ada that assisted managers in
supporting the engineers doing Ada development through a better understanding of the
concepts that they have been learning in the Ada program. This class served as a small part of
the progression towards better management support and motivation. Comments made in the
Ada for Technical Managers class indicated that there is a growing realization that the
principles of software engineering pay off.

MOTIVATION. Another challenge for any type of training program is correctly motivating
the students. In a University setting, classes are taken for credits, fulfillment of requirements,
and to get training in areas that will eventually lead to employment. Thus, even when the topic
is not necessarily the most interesting, generally students will hang on. Here the motivations
are different. Most everyone agrees that additional training will enhance an individual's
performance and growth in job skills, but the immediate return for taking time and effort
from pressing job responsibilities is not as apparent. It can be difficult to motivate
participants towards new or difficult concepts if they are not convinced that they will be of any
immediate value to them. Our courses are not generally required. They are strictly elected by
the participants and sometimes by their managers. Essentially, we have to be able to answer
the unspoken questions like, "Is this worth my time", and "Am I learning, understanding and
enjoying the class, or am I just sitting here wishing that I could go home early?"

Generally, motivation begins long before the class starts, with the enthusiasm and support of
individual managers, as discussed. However, we must continue to motivate the students in the
classroom. It is not at all optional that the class be interesting and relevant. Were this not the
case, the class would quickly die in the wake of severe criticism and disinterest. Of course one
must take a critical look at such sizeable investments of time, and through avenues like class
reviews, and the SETP Planning Committee, inadequate classes are readily identified and
changed or omitted.

The techniques of motivating students in the Ada classrooms are no different than motivating
any type of student. The instructors must utilize good presentation skills, and never waste

27

class time. New or difficult topics should be presented carefully and slowly without allowing
distractions. Continuous monitoring of class understanding and interest is achieved through a
fairly interactive teaching style. It can be difficult to control the flow if students are allowed to
drift off onto tangents by answering, and thereby encouraging too many questions that are of
the "what if" variety. The "what if" game becomes contagious and can lead the discussion far
from the intended objectives. These tend to cause students to miss the forest for the trees.
However, this has to be handled very carefully. In our business, it is exactly these types of
questions that engineers like to ask, are good at asking, and ultimately have to ask if they are
to succeed. To simply dismiss them would cause hostility and an immediate loss of interest in
the class. If handled with respect and clear explanations of the intent, most participants
actually appreciate the direction of the course and the attempt to keep the time spent as
worthwhile as possible. Here again, it helps to know exactly what will be covered in
subsequent courses, in order to know what level of detail is appropriate for responses.

It is also important how instructors respond to students and their needs during non-class
hours. Exhibiting a willingness to accept all class members as people with technical skills,
ideas, experiences, and needs, both personal and technical, is important. We definitely
assume that all class participants are intelligent, but are careful NOT to assume that they are
always getting the point or concept. Just as the instructors are provided with an expanding
knowledge base through opportunities to attend other classes, conferences, symposiums, the
experience and backgrounds of attendees can augment class discussions if encouraged and
monitored.

CLASS ATMOSPHERE. In keeping with the need to motivate students, the classroom
atmosphere is a key factor and must be pleasant, not formal or dull. To sit through a class for
four to eight hours per day is tedious enough to begin with. The frequently scheduled
workshops, breaks, topical anecdotes, and the flexibility to change the schedule as needed
keep a long day from becoming interminable. Special "side shows" are kept on hand for long,
or tiring stretches. One of these "side shows" that has been fun, and certainly served its
purpose is to turn various exercises into small competitions. One exercise in the Design with
Ada class, that reviews the definitions of various software engineering terms and expressions
has been a good example of this. Instead of simply going through a fill-in-the-blank style
questionnaire, these definitions have been laid out on an overhead to look like the
gameboard for "Jeopardy". The class is divided into two groups, and groups are allowed to
choose their "categories" such as "Levels of Cohesion", "Levels of Coupling", "Design
Methodologies", and so on. Points are scored, and in the end, a 15 minute exercise has been
far more interesting, and the material will be remembered much longer because of that. It has
become almost a hobby for the instructors to collect these special cartoons, and activities, and
to use them judiciously.

Group workshops also contribute to a positive classroom atmosphere. Groups are chosen in
a continuously revolving fashion allowing the class to become well acquainted. The
friendships, or level of comfort with others in the class, causes evaluations of presentations to

28

be much less threatening and personal, and thus more honest and helpful. Also, this knitting
of the "team", encourages self-motivation and creativity. Occasionally, it becomes clear who
the independent workers are, or the more dominant group leaders, and then the instructors
can select groups less randomly. Carefully monitoring progress during workshops allows for
this "stacking" that also contributes to the success of workshops and less frustrations for
others who might feel unable to challenge more forceful group members who tend to govern
the whole project.

When dealing with the attitudes of attendees, we have attempted to understand the pressures
they are currently facing, and to not be judgmental about their attitudes, willingness or
unwillingness to accept what's taught, willingness to work on and cooperate during
workshops, and occasionally, the need to let off a little steam in the way of fanatical opinions
and soapboxes.

Just as we try to develop the ability to evaluate designs in an impersonal manner, the
instructors too, must be able to accept criticism. All students have the opportunity to evaluate
each course's materials and the instruction. Students criticism, suggestions, and comments
help to further refine the program, and are always taken seriously. Also, it helps to be able to
tell and take a joke. Finally, after laying an egg, it doesn't hurt to be able to stand back and
admire it.

BACKGROUNDS. Another area of difficulty arises from the widely diverse backgrounds of
participants in the class. It is seemingly impossible to be "all things to all people" and we
continue to grapple with the level of detail that is presented in each course. Although a clear
set of prerequisites and assumptions are defined to select who should attend each course,
there are always circumstances that make them impractical. Among the more extreme
examples, our courses have included participants that range from those who were on their
first week of employment fresh out of college with a fairly good academic background in
higher order languages and essentially no practical experience in real-time embedded
systems, all the way to 25-year veteran hardware engineers with little or no language
background outside of Assembly. In between these extremes are many engineers with
software experience, possibly with Computer Science degrees, and a solid background in
higher order languages as well as varied amounts of understanding of the goals and principles
of software engineering.

Needless to say, putting individuals with that much diversity together in an Ada workshop
stting has its challenges. We find merit in the endeavor simply by the fact that this is exactly
how project teams sometimes are composed outside of the classroom setting. Just as the
value of Concurrent Engineering has been demonstrated in the development environment,
the practice of 'concurrent learning' has its place. An RF engineer with 15 years of experience
certainly has a unique view of a system that more traditional software engineers can also
benefit from. We take the perspective that there is something to learn from everyone, and
that differing viewpoints that cause others to think about the problem in different ways are

29

valuable. Each and every class seems to have its own "personality" and appropriate level for
presentation. It is futile to take a dogmatic "this is how it's always been done before"
approach, and the ability to tailor each class is essential to the overall success of the Ada
training program.

PROCUREMENT. Considering the high cost of training, the decision between procuring
training from vendors or development of courses in-house is not always an easy one. The
SETP has become an assemblage of both. At present, the body of the Ada courses has been
purchased from outside vendors. It has become apparent that some of the important aspects
of these arrangements are the quality of the support, and the ability to establish ownership.
Without having full ownership of the courses, Rockwell would be unable to tailor, change, or
update courses, and they would quickly become obsolete. Presently, the courses are
developed by outside vendors who provide all course materials that Rockwell then owns, and
has the right to change at will. This ownership arrangement allows vendors to retain the right
to sell and teach the courses elsewhere, while not unnecessarily restricting our uses. This has
proven to be a useful set-up for all parties involved. These vendors generally will teach one or
more iterations of the courses, making changes to the materials and to the content, as
requested by Rockwell. Once these courses are suitable, then either the vendor continues to
teach subsequent offerings, or, most often, Rockwell targeted instructors work closely with
the vendor to assume responsibility for the classes. Because of this it is vital that vendors are
able and willing to work closely with Rockwell instructors and to take an active role in the
transition. It is not adequate for a vendor to provide course materials, teach one iteration,
and then sublimely leave town. The level of support and "maintenance" of vendor supplied
courses has been invaluable to our successfulness.

SCHEDULING. It is important to offer courses at convenient times and locations while
balancing the amount of time that participants must spend away from their primary projects
and responsibilities. All classes are scheduled on the Rockwell premises, although not in the
primary office buildings. Classes must be scheduled to allow time for large amounts of
material to be absorbed. However, going solid for too long, that is, long days of lectures
across many consecutive days, doesn't work. Most projects can't afford to allow people to
leave for long periods of time, and fatigue becomes a factor. Spreading things out too much
disrupts the continuity. For these reasons, we have typically taught two iterations in a block
fashion, 7-8 hours per day, every day until completion. This alleviates the backlog of
individuals with urgent needs to have the material as fast as possible. Then we offer a more
gradual schedule where classes will meet either 8 or 12 hours per week, distributed across two
non-consecutive days, until completion. This type of schedule does not lend itself to classes
taught by outside vendors, which is one several reasons why the major Ada classes are taught
by Rockwell instructors.

STAFFING. As mentioned, it is sometimes difficult to fully separate the areas of success from
the challenges. Because it is very time intensive for instructors to achieve the level of
continuity discussed previously, it has not always been easy getting qualified instructors from

30

within each of the Rockwell divisions. For those instructors who do invest the time and
committment, often their efforts are not as visible to their managers and co-workers who are
not in the classroom. Individuals with good Ada and software engineering skills are not only
desireable as instructors, but are also highly in demand for project work. Therefore, there is a
certain amount of attrition among trainers, and new trainers are always needed.

SOFTWARE ENGINEERING AND ADA INDUSTRY CHALLENGES

Training, as it relates particularly to the topics of software engineering and Ada, is not without
its challenges. We will address the following:

* Applying the software engineering Principles and Goals

* Magnitude, Complexity, and Specifics of Ada

- Pre-conceived prejudices to Ada

APPLICATION OF SOFTWARE ENGINEERING PRINCIPLES AND GOALS. In each of
the Ada classes offered for the Avionics and Communications Divisions of Rockwell, in
Cedar Rapids, there is a strong emphasis on the principles and goals of software engineering
as defined by Ross, Goodenough, and Irvine in "Software Engineering: Process, Principles,
and Goals", Computer, May 1975. We stress the trade-off between front-end costs and
life-cycle costs. The need for a better understanding of a life-cycle is addressed. Realistic
scheduling of time for projects to allow for complete analysis and design before pushing into
implementation, has almost become a crusade. Emphasis is placed on the importance of
computing various design metrics and then USING them to make improvements in the design
before proceeding with implementation. We strongly encourage multiple walkthroughs and
reviews at each phase of the life-cycle. Maintaining complete and current documentation at
each level is also pushed. It is clear that not using these skills and steps from the onset of a
project, is almost fatal by the maintenance phases. The cost and time of trying to produce
documentation, and "fix" all the problems introduced by poor analysis and design is virtually
unlimited.

The difficulty with teaching these concepts is not in the acceptance. Very few individuals
would challenge the importance of each of the points. Rockwell is firmly committed to doing
things right and producing quality products. The reality, and the problem across the entire
software industry, is that applying these ideas is expensive, time-consuming and difficult to do
with large project groups under great pressure to produce the finished product quickly. We
realize and acknowledge that these pressures always exist, and attempt to teach and work
towards the ideal.

31

As a result of this kind of focus in the Ada training program, students leave the classes with a
better understanding of the life-cycle and an enthusiasm to make changes in the way that they
produce software products. We feel one indication of this is that, out of better understanding,
engineers are becoming more critical in several ways. There is a 7eater demand for support,
and tools. With a better understanding of the various features and also a better understanding
of our own requirements for these systems, much more care goes into the selection processes.
We have become more critical about doing things right. In the Ada classroom we regularly
experience a certain level of frustration about the state of Ada development and software
engineering across the industry. The good news is that these feelings contribute towards
change.

MAGNITUDE, COMPLEXITY AND SPECIFICS OF ADA. With regards to the language
itself, there are some specific challenges. Although this is much less the case now, several
years ago, we were forced to address many pre-conceived prejudices about Ada. Many of
these ideas are no longer issues, some are still concerns, and some are basically true. Here is a
sample of the statements and ideas that we have tackled.

Ada is too big, has too much to learn, and is too complex.
Ada I/O is awkward.
Code generation is poor because it's slow and inefficient.
Ada restricts the engineer's programming freedom (harder to hack).
It's not suitable for embedded systems or hard deadline scheduling

because tasking is not deterministic. Hard to verify for FAA, etc.
Tools are immature and not supported.
Tasking is slow and cumbersome.
There is no object inheritance, so it is not really an object-oriented

language like C + +. How could it be better than C anyway?
Compilers are expensive, and may not exist for my machine.
Just when we get Ada right we'll have to cope with Ada9X, and who

knows what that means.
It's hard to accept having a language mandated to me.

And finally, it is true that Ada has not saved software engineering and cured the ills of the
software industry like people thought that it would. Ada has not eliminated or solved the
software crisis. Ada is not, and never will be *The Solution* to all of our software woes, but
many felt that the language was originally billed as just that. This alone has created a general
feeling of disappointment and resistance to the language.

Ada is more than just syntax, and cannot be taught in one course, or by merely reading one
book. If one takes all of the courses in the Ada training program in sequence, the introduction
to the language comes as an off-shoot of the design class, and is used primarily as a
representation mechanism for these designs. In fact, there are two complete courses offered
as prerequisites to the Ada Coding classes.

32

TASKING. Specific features of the language are more difficult to teach and to understand
than others. There has been a great deal of attention given to the Ada tasking mechanism.
Many papers, and seminars have been devoted to this topic alone, so we'll not belabor that.
Suffice it to say that we have found that when teaching Ada tasking, it is important to
emphasize that it is indeed an elegant feature of the language, though there are realistic
concerns. We address these concerns directly, explaining them and not skirting the issues. It

is also emphasized that Ada compilers are improving, and tasking is becoming more efficient.
Examples are used heavily, and we rely on workshops to help make clear the ideas of
concurrency and the Ada-specific model.

PACKAGES. Introducing the topic of Ada packages and the packaging mechanism really

seems to bring a focus to many of the things that cause Ada to rise above many other
higher-order languages. This discussion gives us a chance to apply the goals and principles
emphasized earlier by providing direct support for concepts such as abstraction, information
hiding, and modularity. Adding the concept of private types shows how Ada gives users a way
to actually enforce these important software engineering goals and principles. It is at this
point that the students are really able to tie together many of the concepts that up until now
may have seemed like a little too much motherhood and apple pie. During this time, we also
start to develop the concept of the inside versus the outside view of an implementation.
Packages, especially those using private types, give implementors (the inside view) a way to
really develop an abstraction and then to control how this abstraction is used by someone
importing this package (the outside view). This distinction is important to make clear for the

students.

GENERICS. Another specific feature of the Ada language that may be difficult for some is
the use of generics. We find that this may be the most difficult topic to teach and to really
grasp. For many, this is their first exposure to the details of writing generics, as opposed to just
instantiating and using pre-existing generics. Many come into the class with a couple of
notions about generics:

1) Generics are a distant and elegant feature of the language, and
2) They are more work than most project schedules can afford.

There are at least two issues in the generics presentation that must be handled carefully or

they can really become points of confusion.

First, is the notion of views. In languages with only global data, there really aren't different
views of data for the implemerter and the user. When we present this idea in the packaging
unit, we can clearly demonstrate that the implementer has full access and full freedom in
working with data, whereas the user does not. However, when we get into that area in
generics, everything about this perspective seems to turn inside out. The reality is that when it

comes to controlling abstractions in generics, the implementer's access and freedom is
restricted. The user on the other hand, has more freedom.

33

The second key point in teaching about generics is that there are a lot of difficult design
decisions to be made when developing them. In the case of generic subprograms the designer
must be able to distinguish and clearly decide what are to be the generic formal and actual
parameters, as opposed to what will be the parameters to the actual generic call. In the case of
generic packages, design decisions must be made to determine what should be a generic
formal parameter and what should be package data. These, too, can become a point of
confusion if not presented slowly and clearly.

Generic formal parameters can really cause students to have to think about design issues in a
new light. They now have the option of actually passing subprograms as parameters, another
concept that is new to most students. Generic formal constants and generic formal variables,
if not handled properly, can cause a student to wonder why they would ever use them, rather
than concentrating on what the concepts really involve. There, re ',ome very complicated
design decisions involved in generic formal parameters.

EXCEPTIONS. Another caution for those doing Ada training, is the appropriate
introduction of exceptions. Generally, the use and understanding of exceptions is fairly
straightforward. We believe that exceptions are useful and should be employed in Ada
designs. However, if they are not introduced early in an Ada course, the chance is high that
they will be rarely used. Similar to teaching the IF - ELSE - ENDIF structure in any
language, where the else part may or may not be needed, we teach BEGIN - EXCEPTIONS
- END right from the beginning. Of course, exceptions may not be used in every executable
region, but treating the structure in this way makes them a natural part of these regions. If
exceptions are presented as a stand-alone chapter later in the course, with no previous
mention, it is more difficult to impress the importance of using them routinely.

Another issue when presenting exceptions is to clearly define the two prevailing schools of
thought regarding the use of exceptions. There are those who believe that exceptions should
only be used to handle catastrophic unforseen occurrences rather than for predictable events
such as trying to pop an empty stack. Both ideas have merit and should be presented equally.

OUTCOM

RESULTS. The success of our Ada program is obvious both in class from the continuously
high demand for more offerings, and more importantly, from the subsequent effects on the
jobs of participants. Project software reviews and w, .kthroughs now routinely utilize design
review checklists and concepts developed in classcs. Class exercises are drawn from realistic
examples and actual "real-world" projects. In-house consulting by instructors on Ada
contracts is an on-going activity. It is common for participants who completed the courses
two or more years ago, to come back with Ada questions or design issues that indicate their

34

daily involvement with concepts taken from the courses. Management continues to issue
positive evaluations of participants several months after having completed the courses. In
general, the level of Ada awareness and expertise has risen dramatically and the effects of the
Ada program can be seen pushing into all layers of the company.

Collins Commercial Avionics, and Collins Avionics and Communications Division, in Cedar
Rapids, Iowa, have a proven track record in the area of Ada development. Ada has been used
in support of projects for all branches of the military. Additionally, Ada projects comprise a
significant portion of our commercial products in the areas of air transport and general
aviation. It is estimated that in excess of two million lines of Ada source code have been
generated for these and other projects.

CONCLUSION. The experience we have gained in the Ada classroom has allowed us to
develop an engineering and management program that has served as a cornerstone for
successful transition to disciplined software development. Formal training has enhanced the
capabilities of software designers, programmers, and managers, as well as promoted a
consistent way of doing business with respect to software, and in dealing with the software
crisis.

35

This Page Intentionally Left Blank

36

The Ada Apprentice

ABSTRACT - Programming languages are typically taught by the
transfer of an almost continuous series of syntactic structures
between the instructor and the student, without substance, or
meaning, passing through the minds of either. Students are
introduced to language constructs in small doses, they then write
trivial programs using the newly memorized constructs. Most
textbooks reinforce this model by presenting a long sequence of
small code segments that ignore any semblance of good programming
practices such as structure, documentation, and efficiency.

We, as educators, tend to reinforce this model with an
overemphasis on syntax at the expense of creativity. If we want
to train computer scientist, and not simply programmers, we must
redefine our training mission. Language specific coders are
relatively easy to train, however, the development of creative
problem solvers is an excruciatingly painful process.

The Ada apprentice model, which has evolved over a period of
years, attempts to teach programming skills in much the same way
as infants learn to speak a natural language. They are immersed
in the process and learn by the observation of, and participation
in, correct language constructs.

Learning commences with a goal statement emphasizing
creativity and minimizing syntatic regurgitation. Ada is
introduced by presenting the students with a correctly
Functioning program requiring only parameter changes and
procedure calls on the second day of class. Programs are then
introduced requiring the correction of a series of progressively
more subtle bugs. The bug programs are usually designed to
demonstrate the consequences of poor programming practices, such
as global variables. The Flow of furnished programs continues
with subprogram specifications and documentation but missing
bodies and finally, toward the end of the semester, a required
cover to cover program.

The underlying philosophy behind the Ada apprentice model is
that language skills, be they Ada or English, are best acquired
the same way that small children learn a natural language, by
seeing and hearing it done correctly. Classes who have been
exposed to this model in a first programming course have had a
higher percentage students complete the course and have typically
covered three to four additional chapters in the textbook than
students using a more tradition learning paradigm. Every
indication is that subsequent performance is at least as good as
students having been exposed to a more traditional mode.

37

The Ada Apprentice

the Far east was

seven the Jury is still out on discipline, e east coast don't
fathers did teach young Urban what it meant to a strong desire to

ill common practice, a large part of the First
nt studying Latin. It was the first time in my
experienced absolute misery. CI hadn't yet n buildings. Since

Briously.) rested in female
re I had to

ost embarrassing moments of my entire life refutable despite
he end of my sophomore year. We were a enough to speak
s Caesar and I was lost as usual. When my turn vious, I had to
las come over to my desk to point out the place he post USO Ckind
to Find that I had written the entire 3 women one
the Latin. When you are caught in a ig a crash course
this magnitude by your Latin teacher, who also inadequateness I
Dean of Discipline, the term terrifying ad to be either
ly takes on a whole new dimension. 7e anxiety. At

a public fool of
g my junior year it was suggested that I take
d aspirations of becoming an engineer. The
that much technical writing was done in German. jurs a night, five

n was that my advisor, Father Ignatious, 3 weren't even
a Mercedes since he was suggesting the same : the end of three
to those desiring to go to medical school, or to id understand what
ood. to anyone that was

great. The
f one full semester of die der den die I could foreign language.
=omplete sentence that native speakers of German
d understand. I likewise could only pick ,i, an ithers has missed?
hen these same people were talking among ime environment
ordered on humiliation, so I did what any other 3 speak. Five year
een year old youth would do, I gave up German "mal sentence
spirations. I certainly didn't want to become a hummingbirds who
field where all they did was sit around reading ipable of
No wonder we had to go to war with a people d-air.
such an insidious language.

ir several years of
school with a strong belief that I was a good ng language is
had after all managed to graduate despite irbose programming

I record for the number of demerits earned in ien I realized that
t being thrown out. I was even move strongly ts I started
didn't posses an ounce of linguistic ability. :ifically how do
concern that I was third in my class, from the t without
omplished my primary mission in avoiding a Full of time it was
years. ich patterns. It

reasonable amount
s later I arrived in Japan for a one year stay ,lieve in this
e Sam's army. During my tenure in signal school ire than one word
e in my class that had selected the far east as of an adult mouth.
e of duty assignment, there was after all a ve psychologist is
g on in Korea. In typical army fashion the the language at a

38

The Ada Apprentice

very early age and that structural problems, such as noun pronoun
agreement, are simply demonstrations that the rule has not been
mastered. There is an extremely important observation to be made
if the theory is accepted, namely, if correctly structured
language is all that children hear, and subsequently read, they
will use the language flawlessly despite the fact that they don't
know how to congregate a verb and don't know a split infinitive
from a dangling participle.

Now the point of this long diatribe. Can a computer
language be learned like small children lean a natural language?
I sincerely believe it can and that is what this presentation is
all about.

IMPLEMENTATION - To set the tone, for not only the course but for
the entire curriculum of study, I start the course with a goal
objective. The statement "we are trying to develop computer
scientists who happen to program not computer programmers who
dabble in computer science" will usually elicit the question
"what is the difference between a programmer and a computer
scientists." The answer I usually give is "about twenty-five
thousand dollars a year." The answer is not quite as cavalier as
it may initially sound. I go on to state that a computer
scientist is a person capable of creative problem solution that
utilize computers while a programmer frequently implements the
ideas of others. I believe the distinction is important since
most freshman believe that programming is all there is.

The underlying philosophy of my teaching is the belief that
if the desire is created the passion will follow. I also believe
that the first day of class is critical, give them you best shot
to start the class and the rest will flow with ease. I
personally think that the typical first day regimen of take
attendance, hand out a syllabus, and send them home is a big
mistake. It sets the tone for the remainder of the semester.
It's hard to instill passion when the instructor trivializes the
first class.

On the First day of virtually any computer related course I
start by stating that you may thing that you are here to learn
how to program (or whatever) but you are not. You are here to
learn how to solve problems and coincidentally you are going to
use a computer to prove that you have indeed solved the problem.

The following points are emphasized:

1. Problem solving is a generalizable skill.

2. Creativity is First a state of mind and only then a

methodology.

40

The Ada Apprentice

3. Program efficiency and creativity draw upon the same
skills.

However, simply solving a problem is usually not enough. To
set the tone for the remainder of the course, and indeed the
remainder of their computer careers, a problem solving paradigm
is developed. From this point on when we speak of a solved
problem it is implied that the solution is the "best" solution
not simply something that works. (You might be surprised if you
ask a class of upper-class majors, or graduate students, to
describe the characteristics of a 'good' problem solution or
'good' program.)

A 'good' program, like a 'good' problem solution, has three
necessary components, namely:

1. Effectiveness. The problem must be solved correctly.

2. Maintainability. The solution must be easily modifiable,
especially by someone other than the original problem
solver, to reflect changes in conditions and/or deficiencies
in the original solution.

3. Efficiency. The solution should be implemented using the
minimum amount of resources including human, machine and
financial.

The following example is used to illustrate the difference
between a solution that works and a good solution. It makes such
a point that I have had graduates out in the field for several
Wears call a say they started a new project and the first thing
that come to mind was the tennis match problem of many years
before. Try giving this problem to your introductory students.

Because of your great mathematical and computer prowess, the
activity director of your favorite tennis club asks if you would
write a program that could determine the number of matches
required given the number of players entered in a
single-elimination tournament. What he is requesting is what we
computer scientists like to call an algorithm, which is simply a
recipe, a step by step procedure that will produce the desired
results as a function of the input data.

At this point I typically make sure everyone understands
what the term single-elimination means in the context of a
tournament. That is, A plays B and C plays D. IF A and D each
win in round on they play each other in round two and the winner
that match is then the winner of the competition since there is
no one remaining to be played.

41

The Ada Apprentice

At this point I typically make sure everyone understands
what the term single-elimination means in the context of a
tournament. That is, A plays B and C plays D. If A and D each
win in round on they play each other in round two and the winner
that match is then the winner of the competition since there is
no one remaining to be played.

A simple, but effective, starting point is to define the
problem by giving both the inputs available and the desired
output.

Inputs. 1. Fixed number of players (teams if doubles).
2. Single elimination, when you lose your are out.
3. One winner.

Output. 1. Total matches required to complete tournament.

To assure that everyone understands the requirements I ask
how many matches are required if there are eight players in the
tournament. The majority of the group will get the correct
answer of seven. What tends to evolve in a problem such as this
one is that the group will start to solve the problem by assuming
a starting value and working it through, they model the
tournament. If they don't I cheat and push them in that
direction.

Leading them deeper into the trap I mention that an
efficient way to solve a problem such as this is to assume a
starting value and work it through recording the steps as we
progress. Lets try sixteen as a small manageable number. In the
first round there will be eight matches as each of these players
square off against each other. Of the original sixteen half
survive to go on to the second round. In the second round the
eight first round survivors play four matches for the right to
continue. These four matches plus the eight from the first round
produce a total of twelve matches for the first two rounds.
Round three has four players participating in two matches and
finally the last round has the two club shills playing each other
for bragging rights. The three matches played in the semifinal
and final rounds plus the twelve matches required to that point
produces a total of fifteen matches. The solution algorithm may
be clearer when these results are exhibited in tabular form.

Players Matches Players Total
Round Entering Played Surviving Matches

1 16 8 B 8
2 B Lt 12
3 4 2 2 I4

2 1 1 is

The solution appears to be Fairly simple. Stated in the

form of a recipe it would be:

42

The Ada Apprentice

STEP OPERATION
1. Initialize total matches to zero.
2. Divide the number of players by 2.
3. Add the result of step two to total matches.

If the number of players remaining is greater than
one go to step two.

5. Report the number of matches.

If you give your friend the activities director a program
based upon this algorithm you will come up with egg on your face.

(When reviewing where we went wrong I point out the problem with
test data that appears to be different by has identical
characteristics.) If the original number of players is not a
power of two e.g. 2,',8,16,etc., an odd number of players will be
presented at the start of one or more rounds. Only in
mathematics do we have a half player or half match, in the real
world one player would be given a bye and automatically proceed
to the next round. To accomplish this King Solomon task the
algorithm will emerge as follows:

STEP OPERATION
I. Initialize total matches to zero.
2. Divide the number of players by 2.
3. Add the whole number portion from the result of step

two to total matches.
i. If the result of step two (players remaining)

contains a fractional part then round it to the next
higher whole number.

S. If the number of players remaining is greater than
one go to step two.

We have now developed an algorithm that will produce the
correct answer every time. Does it necessarily follow that this
is the best solution to the problem? Not at all. We jumped at
the first solution that presented itself. This desire to quickly
solve the problem is an occupational hazard that infects most
computer programmers that consider themselves programmers rather
than problem solvers. The distinction is an important one as we
are about to see.

The conceptual approach used to solve the problem was the
analysis of how a winner is determined. A simulation of a
tournament was then developed. Simply stated the winner must
survive until there is no one remaining to play. This required
the tracing of rounds from the beginning to the end of the
tournament. Is this what we were ask to solve? No we simply took
a long route to produce the correct answer which is a simple
number.

43

The Ada Apprentice

What do we have to work with? In a mathematical sense we
have the set of all players and two subsets: the winner and all
losers. If we look at the problem specification again there is a
very subtle but key piece of information that is free for the
asking although it is not explicitly stated. If there are
sixteen players initially and there is but a single winner there
must therefore be fifteen losers. In the general case if there
are N number of players there are N - 1 losers. Therefore,
another track to solve the problem is to analyze how a losers are
determined and that is fairly straightforward, they simply do not
win a match. Ergo, the number of matches is equal to the number
of losers which in turn is equal to the number of players less
one. The algorithm now reduces to:

STEP OPERATION
1. Total matches is equal to number of players minus one.

Two points require emphasis here. It is obvious that a one
step algorithm is more efficient than a five step algorithm,

which may repeat itself many times. Mention the subproblems of
extracting the fractional and integer parts of a division.

The one-step solution demonstrably optimizes the
characteristics of effectiveness, maintainability, and
efficiency. The moral of this exercise is do not jump at the
first solution that presents itself. Search for solution that is
the simplest for the stated objectives. This will usually be the
solution that is the most adaptable and, in addition, has the
greatest chance of being Followed through to its completion.

There is an especially powerful point here for programmers,
once coding starts using a particular solution technique almost
never will a better approach be taken since it will require
scraping existing code.

PROGRAMMING - After the tennis match exercise described above the
remainder of the first day is spent describing the
characteristics of a 'good' program and the concept of
subprograms and parameters. The second day of class witnesses
the exposure of the neophyte programmers to a correctly written,
well documented, and highly structured Ada program. Appendix A
is a listing of program HELLO.ADA. Unnecessary details are
hidden in a package STUDENT. Appendix B contains the listing of
two procedures from package STUDENT.ADB. The specification of
their First program requires that some parameters be changed in
procedure calls and the addition of a few calls to existing,
although hidden, procedures. Some documentation, conforming to
supplied standards, must also be added to the program. A
tutorial on the use of the site-specific Ada editor and compiler
and the completion of the First programming assignment are both
completed during a single one hour lab session. Think of the

44

The Ada Apprentice

boost of one's confidence upon producing a functionally correct
Ada program that is additionally, highly structured, and well
documented on the second day of class.

A series of bug programs are introduced after the students
are conformable with modular design and parameter passing. These
program have progressively more difficult syntactic and logic
bugs that require fixing. I originally learned Pascal by
debugging student program and can personally attest to the
effectiveness of this technique. The bug programs additionally
have errors in program structure, rather than logic, such as code
within a loop that produces the same answer every iteration.
Segments of required documentation also require completion.

An early bug program demonstrates the undesirable side
effect that can be caused by unintentionally changing a global
variable. The negative effects of poor programming practices are
dramatically demonstrated when the consequences appear right
before your eyes. To paraphrase Turgenev who paraphrased an old
Chinese proverb, "A bug program shows me at a glance what it
takes dozens of pages of a book to expound."

A problem inherent in the teaching of a first programming
courses is the large diversity of ability and actual programming
knowledge. Some students are being exposed to programming for
the First time while others have had a substantial amount of
prior programming. I tell the assembled mass on the first day of
class that the students that have previous programming experience
have only a slight disadvantage over those with no experience.
It takes time to undue all those poor habits.

This model allows for differences in student's ability level
and motivation by always assigning extra credit portions to
programming specifications. Students are additionally encouraged
to look into the supplied package body to see how the "tricks"
are done. The highly motivated students will be using techniques
from the package by the third program.

A series of assignments then build upon existing programs.
One of the bug programs is designed to demonstrate accumulation
by requiring the input of a series of integers. Modification of
the program requires that an array be used to store the supplied
numbers. The subsequent modification of the array program
requires the inclusion of a sort procedure. No only does this
technique reduce typing time it is valuable experience in program
maintenance, which is where most of them will start the careers.

The progression continues by giving the students a program
with a procedure heading, declaratives and documentation. They
must supply the statements necessary to complete the body. There
are subtle lessons in this approach. The use of supplied data

45

The Ada Apprentice

objects having meaningful names has far greater impact than a
dozen lectures describing the "real world" disadvantage of
cryptic data names. We educators have tended to ignored our own
experience that repeatedly demonstrates that we learn best by
doing, not by listening to someone else tell us how the task is
accomplished. The initial series of programs are designed to
introduce the software engineering concepts of life cycle, data
abstraction and procedural abstraction. The general conceptual
premise is the student's immersion in good programming practices.
They do not have the flexibility to develop poor habits.

It has been my experience that students have a preconceived
idea of approximately how much external class time they will
devote to any course. In a programming course keyboard time
counts. By giving students the vast majority of required code
the time spent on the terminal is quality productive time.

CONCLUSION - The Ada apprentice model has evolved over a period
spanning ten years of teaching programming intensive courses
ranging in levels from introductory to graduate. It is my
sincere belief that we don't teach students anything we only help
them learn. If we as educators create a conducive and
stimulating environment the students will supply the required
cerebral dexterity. The maximum programming grade given for a
program submitted on the second day of class is more
inspirational than a thousand admonishments that "this is a tough
course requiring substantial time."

It is difficult objectively evaluating this method without
having the same instructor teach parallel courses using two
different techniques. There would even be Flaws in such a
technique. When I have taught using this method when other
instructors have used a ,,ore traditional approach my students
have completed more programs, covered more material, and have
received higher grades in the next course in the sequence taught
by someone other than myself. Pedagogically I believe that
immersion encourages internalization more effectively than
memorization. The shift of class time to substance from syntax
transfers the emphasis from simply creating programs that work to
the creation of "good programs" that creatively solve problems
with the best solution.

The apprentice model, true to its name, allows students to
take progressively more responsibility for their craft. The
progression is initiated by observing the works of a master
craftsman. Small finishing touches are initially added by the
novice. The apprentice supplies progressively more detail, under
the watchful eyes of the master. Finally that magical day
arrives when the students reaches journeyman status and enters
the wonderful world of data structures.

46

Appendix A

-- This program is designed as a simple demonstration in
-- introductory programming concepts. Documentation in all
-- sections must be completed before submitting finished
-- version. Documentation must conform to the macro programming
-- standards.

with STUDENT; use STUDENT; -- Tools for student programs.

procedure HELLO is

procedure GOTOWORK is
-- Purpose: To performs the work for program HELLO.
-- Requires: Nothing.
-- Modifies: The terminal screen.
-- Description: This subprogram is a general purpose procedure
-- designed to demonstrate parameter passing.

begin - procedure GOTOWORK
DISPLAYMESSAGEC"Hello World");
-- Pass gour name as the actual parameter in the next line
DISPLAYMESSAGEC" my name is Urb LeJeune");
New_line;
DISPLAYMESSAGEC

"Send help I'm a prisoner inside this program");
Newline(2); -- Send two CR LF characters
DISPLAYCHARACTERC'&',1O); --Display the ampersand ten times
DISPLAYCHARACTER('?'); -- Display one question mark.
-- Note that the default replication factor is one.
DISPLAYCHARACTERC'*' ,5); -- Display the asterisk Five times
Newline(3); -- Send three CR LF characters
DISPLAYMESSAGEC"end of job");

end GOTOWORK;

begin -- procedure HELLO
GOTOWORK; -- Call procedure GO TOWORK

-- All student programs should end with a call to End_OFJob
ENDOF_JOB;

end HELLn.

47

Appendix B

package body STUDENT is
-- Purpose: A group of tools for student programmers

procedure DISPLAYCHARACTERC
WHAT : in character;
COUNT in positive :- 1) is

-- Purpose: To display the passed character a repetitive number
-- of times.
-- Requires: WHAT passed as the character to be displayed
-- COUNT passed as the replication factor. It must be
-- a positive number which defaults to 1.
-- Modifies: Display characterCs) at current cursor position and
-- the cursor is left at next available display position.
-- Description: Procedure DISPLAYCHARACTER displays a passed
-- character WHAT COUNT number of times.

TEMP_STRING : TEXTC(O);

begin -- procedure DISPLAYCHARACTER
SETCTEMP_STRING,""); -- Build display string.
for INDEX in 1..COUNT loop
APPENDCWHAT,TEMP_STRING);

end loop;
Textio.PutCVALUECTEMPSTRING));
if PRINTERISON then Put(PRINTER,UALUECTEMPSTRING));
end if;

end DISPLAYCHARACTER;

procedure DISPLAYMESSAGEC
MESSAGE : in string;
BACKGROUND : in boolean :- true) is

--Purpose: To display the contents of the passed string.
-- Requires: MESSAGE is any valid string.
-- BACKGROUND is a boolean switch that will cause
-- MESSAGE to display in background if TRUE and
-- foreground if false. The default is true.
-- Modifies: Message is displayed at current cursor position and
-- the cursor is left at next available display position.

ROW, COL : integer;
TEXT_1 : textC80);

begin -- DISPLAYMESSAGE
GET_POSITION(ROW,COL);
Put(ROW,COL,MESSAGE,REVERSEUIDEO -> background);
if PRINTERISON then Put(PRINTER,MESSAGE);
end if;

end DISPLAYMESSAGE;

end STUDENT;

48

A Sequence of Freshman Level Integrated Laboratory Assignments

John Beidler
Computing Sciences

University Of Scranton
Scranton, PA 18510

BEIDLER@JAGUAR.UOFS.EDU
(717) 941-7446

(717) 941-4250(FAX)

1. Introduction

There is no doubt that the programming language plays a significant role in the early
courses in computing. In fact, A primary obligation of course instructors must be to keep the
students from getting so wrapped up in the programming language that they miss the transcending
software development concepts. When selecting a programming language to support the first
several courses in computing we use the following criteria:

a. In the worst case, the language should not get in the way of teaching concepts.

b. In the best case, the language should provide direct support to important concepts.

In following these criteria, in 1976 our department selected PASCAL as our primary
support language, in 1984 we moved to Modula-2, and went to Ada in 1990. With only one
year's experience with Ada, there is little doubt about the positive and immediate impact this
choice has had on our curriculum. This paper explores one aspect of a freshmen level course
that uses the packaging capability of Ada to supply support for laboratory assignments.

However, we must be cautious, we must not let students become so enamored with the
programming language that they miss the overriding concepts. The teacher must supply the
balance. This balance is partially achieved through a variety of software development
experiences where each experience has a significant software development goal. The software
development experiences roughly fall into three categories:

1. Laboratory Assignments.

2. Traditional Programming Assignments.

3. Projects.

Projects may be individual or group projects that are performed over an extended time frames
of at least a third of a semester. Projects must have a substantial non-coding components and

49

include significant analysis and design experience and documentation. Traditional assignments
emphasize coding, testing, and debugging, and may include some analysis and design.

Laboratory assignments, the object of this paper, are designed to be complete in a 1.5 to
2 hour laboratory period. There primary purpose is to demonstrate hardware facilities or specific
relationships between progiamming concepts and programming language features. Laboratory
assignments should be designed to provide insight. Because of the one and one half to two hour
time frame of laboratory periods laboratory assignments should not be designed to provide
analysis and design experiences.

This paper describes a coordinated series of laboratory assignments that accompany our
CMPS 144 (CS 2) Course. These assignments were designed to demonstrate relationships that
exist between programming concepts and programming languages features. This course is a
broad-based introduction to computer science that uses Ada as its support programming language.
This course begins with an emphasis on analysis and design. This means that packages and
subprograms are formally presented early in the course, before control structures and data
structures. This strategy has the advantage of encouraging good software design by emphasizing
encapsulization, top-down design and stepwise refinement. However, this approach requires
resources to support it.

Currently, there is a trend in computer science education towards the coordination of
science-like laboratories in support of various computing courses. As this trend continues,
several issues regarding laboratory assignments must be addressed. Two important issues are:

1. Laboratory assignments must be clearly defined with appropriate objectives and have
reasonable expectations that the majority of students should be expected to complete the
assignment during a normal laboratory period (1.5 to two hours).

2. Each laboratory assignment must have a clearly defined starting points, statement of
work, and appropriate resources that allow the students to concentrate their efforts on
laboratory assignment's goal and not waste time on peripheral issues.

Many science laboratory assignments have two objects, the stated objective and the transcendent
objective. The stated objective is the operational goal of the laboratory assignment. The
transcendent objective is the educational objective that the students are expected to observe
through the laboratory assignment.

Setting up a computing laboratory assignment should be more that giving a description
of the assignment and a workstation. A laboratory assignment should not be a race to grind out
the necessary code within a given period of time. A laboratory assignment should clearly state
the starting point and directions on how to proceed in accomplishing the assignment, possibly
even partially complete source code, so that the students have a good opportunity to observe the
transcendent objective while working on the stated objectives.

One method of accomplishing this is with a coordinated series of laboratory assignments,
all having the same, or similar, stated objectives but each with a distinct, or unique, transcendent

50

objective. The series of assignments described in this X
paper all have the same stated objective, namely, build x x Y Y z 4 4

a software system that draws the symbols in your user X X * Y z 4 4
• XX Y YZ z 4

I.D. on the terminal using stick figures, as illustrated x yz ,4444444
in Figure 1. By varying the approach to -xx Y z

X X Y Z 4

accomplishing the stated objective each assignment x X Y z 4

targets a unique transcendent objective. By seeing a I Y UZZZZZ 4

variety of software concepts and their implementations Figure 1 Example Login
in the context a particular problem they have a
framework for evaluating the relative capabilities and
merits of various approaches.

Section 2 of this paper describes our primary resource, a package we refer to as
DOODLE. Section 3 describes the series of DOODLE-related laboratory assignments and their
relationship to the material covered in the course. Section 4 summaries our observations about
the use of coordinated laboratory assignments and their relationships to material covered in the
courses.

2. The DOODLE Package

The DOODLE package evolved from a Modula-2 library module that supported the same
course in previous years. However, when the change was made from Modula-2 to Ada, the
module was not just translated into Ada. Rather, the module was redesigned to take advantage
of the features available in Ada. The specifications for the DOODLE package appear in
Figure 2.

The DOODLE package makes a limited collection of resources visible to users. These
resources support character graphics on a standard terminal. Currently versions of this package
exist for the VAX, SUN, and MS-DOS environments. Its basic resources are:

a. CLEAR-SCREEN - A procedure that erases the terminal screen and places the cursor
in the upper left hand corner.

b. DRAWLINE -- A procedure that draws a "best fit" line from the coordinate position
indicated by the first two coordinates to the position indicated by the second two
coordinates using the character indicated by the fifth parameter. This procedure uses a
well known graphic algorithm for drawing straight lines.

c. GETINT -- A data entry procedure that displays a prompting message on the screen,
accept an integer as input, and returns an integer. The original Modula-2 version of this
procedure used a pop-up window for the dialogue. An X-Windows version is under
development.

d. GET-CHAR -- A single character data entry equivalent of GETINT.

51

package DOODLE is

subtype ROW TYPE is integer range 1 .. 23;
subtype COLUMNTYPE is integer range 1 .. 80;

procedure CLEARSCREEN ;

-- Pre-Cond: None
-- Post-Cond: Erase screen, position cursor at (1,I)
-- Exceptions Raised: None

procedure DRAWLINE
(LEFTROW : in ROWTYPE ;
LEFT COLUMN : in COLUMN TYPE ;
RIGHT ROW : in ROW TYPE ;
RIGHTCOLUMN : in COLUMN TYPE ;
THE_SYMBOL : in character)

-- Pre-Cond: THESYMBOL must be a display character
-- Post-Cond: Draw a "best-fit" straight line between the
-- indicated screen coordinates using THESYMBOL
-- Exceptions Raised: constrainterror

procedure GETINT
PROMPT : in string ;
THEENTRY : out integer) ;

-- Pre-Cond: PROMPT is a string of display characters
-- Post-Cond: Place integer reply into THEENTRY
-- Exceptions Raised: constrainterror

procedure GETCHAR
(PROMPT : in string ;
THEENTRY : out character)

-- Pre-Cond: PROMPT is a string of display characters
-- Post-Cond: Place character reply into THEENTRY
-- Exceptions Raised: constraint-error

end DOODLE;

Listing 1 DOODLE Speciflications

A few additional items are encapsulated in the package, but these four procedures are the basic
support upon which the coordinated set of laboratory assignments are constructed.

52

3. The Coordinated Laboratory Assignments

1. Build a program using the DOODLE package as a resource to draw with character
graphics on a VT-100 compatible terminal your user ID with stick figures. Each
character should appear in a box that is 14 columns wide and 9 rows deep.

2. Reorganize #1 emphasizing procedural abstraction by creating a procedure for each
symbol in your user ID and placing the code that draws each symbol into the
appropriate procedure. Give each procedure a menaingful name, stating what the
procedure does, like DRAWAN_X.

3. Place three formal parameters in the declaration of each procedure in #2. The three
parameters are for passing information between the procedure and calls to the
procedure. The three pieces of information are the left row and top column of the
rectangle where the symbol is to be placed, and character used to draw the figure.
To verify that the parameters are being used correctly, make several calls to each
procedure modify the parameters to draw the figure in various locations of the screen.
For example, if the formal parameters are,

procedure DRAW AN X (
X ROW : in ROW TYPE;
X-COL : in ROWTYPE;
X_SYM : in character);

then a call to DRAWLINE might appear as,

DOODLE.DRAWLINE (X_ROW+O, XCOL+O,
X_ROW+9, X_COL+14, XSYM)

where the first four parameters are the sums of one of the screen coordinates of the
upper left of the box containing the figure and a relative coordinate of the line in a 14
by 9 box.

This laboratory assignment is critical because of its use in later assignments. Verify
the assignment by modifying, recompiling, and executing the program several times,
each time modifying the actual parameters,

DRAWX (1, 1, '*');

DRAWX (5, 40, '?');

and drawing the symbols in different areas of the screen.

Table 1 Assignments 1-3

The original purpose for the DOODLE package was to support a collection of laboratory
assignments whose purpose was to promote an early emphasis of procedures and parameters in
the course. We realized that we could use this collection of assignments as the foundation for
a more complete series of laboratory exercises. This collection of exercises centered around the
single simple visual problem, illustrated in Figure 1, and uses that problem to demonstrate

53

various relationships between programming concepts and programming language support. They
also demonstrate the value of an Ada Programming Support Environment.

The stated objective behind the assignments is the development of a program that draws
the user's system ID on the text screen with stick figure graphics. These assignment have several
advantages, including the immediate feedback, on the screen, of the display of the lines that form
the stick figures for the symbols in the user's system ID. Using the visual feedback, most
students can build a working version of the first assignment in about an hour and a half.

4. Remove the formal parameters from the procedures build in #3 and replace them with
three variables defined within the procedure. Now, within the procedure make two
calls to DOODLE. GETINT to get the row and column coordinates of the upper left
during program execution and call DOODLE. GET_CHAR to get the symbol to be used.

5. Note in #4 with the dialogues you had to do the same thing over and over again to get
the data for each symbol. Write, and correctly place one procedure,

procedure DIALOGUE (ROW : out ROWTYPE;
COL : out COLTYPE;
SYM : out character;
MSG : in string);

that will be used by all of the procedures to perform their dialogues. The code for this
procedure should basically be one copy of the data entry dialogue code from #4. The
MSG is concatenated to the stings passed to GETINT and GET-CHAR, as in

DOODLE.GETINT ("Enter the row for " & MSG, ROW);

Call this procedure for all sets of data entry.

6. Place exception handling into the DIALOGUE procedure in #5 so that each data entry
is handled by its own exception handler. This is accomplished by placing each data
entry into its own statement block,

begin

exception

end

A constraint error is raised by the system if the data entry is correct, or you
may raise it witTn an if structure if the row or column entered would force the
symbol to go off the screen.

Table 2 Assignments 4 - 6

Typically, students complete each laboratory assignment in about one to two hours, the
time of a typical laboratory period. Tables I through 5 briefly outline the assignments. The first
assignment gives students an opportunity to become acquainted with the programming support

54

7. Starting with #3 replace the three parameters by one parameter, a record containing

the three pieces of data,

procedure DRAWX (X: in SYMRECORD);

Initialize each record using an aggregate and use the data in the record using 'dot"
notation,

DOODLE.DRAWLINE (X.ROW+O, X.COL+O, X.ROW+9, X.COL+14, X.SYM)

8. Starting with #7, take a look at the procedures you have to draw each symbol. There
is a sameness to them. We are now going to get rid of all of them and replace them
by one procedure,

procedure DRAWSYMBOL (THESYMBOL : in SYM_REC ;
THELINES : in SYM ARRAY
NOOFLINES: in integer);

where NOOFLINES is the number of lines required to draw the symbol. The line
information is stored in a structure defined as:

type SYMREC is record LEFTROW : ROWTYPE;
LEFT COL : COLTYPE;
RIGHTROW: ROW TYPE;
RIGHTCOL: COLTYPE

end record;
type SYMARRAY is array (1..15) of SYMREC;

With these declarations the information to draw an X is placed in the first two
locations in the array of records,

XLINE : SYMARRAY ;

X_LINE(1) := (0, 0, 8, 14);
X_LINE(2) := (0, 14, 8, 0) ;

and the x would be drawn with a call to DRAWSYMBOL,

DRAWSYMBOL (X, X_LINE, 2);

Within DRAWSYMBOL, the symbol is drawn with a for loop,

for INDEX in 1..NOOF LINES loop
DOODLE.DRAWLINE (

X.ROW + XLINE(INDEX).LEFTROW,
X.COL + XLINE(INDEX).LEFTCOL,
X.ROW + XLINE(INDEX).RIGHTROW,
X.COL + XLINE(INDEX).RIGHTCOL, X.SYM);

end loop;

Table 3 Assignments 7 - 8

55

9. In #8, replace the definition of SYMARRAY with an unconstrained definition. Then

define each symbol's lines with its appropriate constraints,

X_LINE : SYMARRAY(2) ;

Redefine DRAWSYMBOL with only two parameters and use an attribute function to
obtain the upper bound on the for loop.

10. Start with #6 and modify the exception handler by placing each data entry in a while
loop where the loop terminates only when a valid data item is entered,

VALID DATA := false;
while-NOT VALIDDATA loop

begin

exception

end
end loop;

11. From an object oriented point of view, all of the information that belongs together
should be kept together. Start with #9 and include the array of line information in the
SYMREC. Define SYM P.EC as a record with a discriminant and use the discriminant
to constrain the array in the record,

type SYM REC (SIZE : positive) is
record

ROW : ROW TYPE ;
COL : COLTYPE ;
SYM : character;
LINE : SYM ARRAY (SIZE) ;

end record;

12. Modify the exception handlers in #10 so that a user has a fixed number of attempts,
like 5, to enter correct data before the program is simply aborted. This requires
additional code after the whi 1 e loop containing the exception handler, an if structure
to determine the reason the loop terminated and handle it accordingly.

Table 4 Assignments 9 - 12

environment -- the editor, compiling, linking, and running programs. The goal of the second
assignment is to acquaint students with procedural abstraction. The third assignment introduces
data flow through procedures. The fourth assignment acquaints students with interactive 10.
The fifth assignment encapsulates the interactive 1O of the fourth assignment with a single
procedure.

Assignment Six uses the interactive 10 developed in Assignments Four and Five as the
context for demonstrating exception handling. The students build three exception handling blocks
around the three data entries in the DIALOGUE procedure.

56

Assignment Seven emphasized the representation of objects and their attributes. Each
rectangle may be viewed as an object. In this assignment, the objects are partially encapsulated
by using a record to bring together three values that combine to define the location and
appearance of the object on the terminal screen.

Assignment Eight is a pivotal assignment. It demonstrates the classical trade-off of data
structures between algorithms and the representation of information. Specifically, with this
assignment the students see that by storing the information to draw each symbol in an array. The
immediate impact of this use of a data structure is that all the separate drawing procedures for
each symbol are replaced by one procedure.

Assignment Nine introduces unconstrained arrays. Assignment Ten returns to the
exception handling in Assignment Six and has the student experiment with more sophisticated
exception handling. Assignment Eleven extends Assignment Nine by continuing the
encapsulation of objects by including a constrained array in the records that represent objects.
This introduces the students to records with discriminants.

13. Replace the exception handlers in #6 by a recursive exception handling procedures by
placing each data entry in its own recursive procedure, contained in DIALOGUE.
Each procedure handles possible exceptions by recursively calling itself.

14. Merge #11 with #12 or #13. The fundamental problem you encounter is due to the
change in #12 and #13. The simplest way to merge these is to pay attention to
procedure names. Specifically, the DRAWSYM procedure, as its name implies, draws
the symbol. The name does not indicate that a call to the DIALOGUE procedure
should be made from within the procedure. Instead, make the apporpriate call to the
DIALOGUE procedure, to obtain the necessary information, before each call to
DRAWSYM.

Table 5 Assignments 13 - 14

Assignments Twelve and Thirteen continue the experimenting with exception handling
starting with Assignment Six and continued in Assignment Ten.

Assignment Fourteen wraps everything up by merging together the object encapsulation
and exception handling threads of several previous assignments into a single complete piece of
software.

Although there are fourteen assignments in this sequence, not all of these assignments are
used in any one semester. These assignments may be interleaved with other laboratory
assignments. The selection of laboratory assignments may depend upon a balance in the material
emphasized in laboratory assignments, programming assignments and projects. Figure 2
illustrates the possible sequencing of these assignments.

57

4. Experience with DOODLE-based Assignments 1

This series of assignments stem from a desire to introduce I
subprograms early in the semester. Specifically, we wished to have 2
a resource that provides an interesting set of assignments early in the [

semester, which emphasize top-down design before control structures 3
and data structures have been introduced. The use of graphics and its 3 -7-8
advantage of immediate feedback was attractive. However, the
changing of screen modes between graphics and text is problematic on 4 9
some systems. This led naturally to the use of character graphics with
the screen in text mode. I 1

5 A
A coordinated series of laboratory assignments was first used I

during the 1989-90 academic year at the University of Limerick
(Ireland). The support language in the first year courses at The
University of Limerick is Modula-2. A Modula-2 support module I
was constructed for the JPI's Modula-2 programming environment 10
under MS-DOS. The JPI environment had several advantages, I
including windowing support. At the University of Limerick the
course, equivalent to CS 1 and CS 2 combined, was taught over three 12 13
ten week terms. Because of limitations within Modula-2, those I
assignments involving unconstrained arrays and exceptions were not t__ or &-14
included. However, there was an additional assignment in which a I
generic lists package was used to store the line segment information Figure 2 Assignment
for drawing the figures. Sequencing

During the 1990-91 academic year, an equivalent Ada support
package was developed, first using the MS-DOS based Meridian Ada system, then a VT-100
version was developed to work on the VAX under VMS and on the SUNs, running SUN OS
under X-Windows. Seven of these assignments were used during the Spring Semester in our
CS 2 course. These assignments were interleaved with other assignments that acquainted the
students with other resources and the bounds of these resources.

5. Conclusions

There are two major advantages in having a coordinated series of laboratory assignments.
First, students gain a greater appreciation of conceptual issues with less time wasted in starting
each assignment. Specifically, since less time is spent starting up subsequent related laboratory
assignments students have a more productive laboratory experience. Second, the single stated
objective gives the students a single framework for measuring the value of various programming
concepts and the corresponding language support.

When interviewed at the end of the semester about there experiences with Ada versus
their previous programming language experience, to a person the students felt much more

58

positive about Ada, and they all provided reasons for their choices. In many cases there reasons
relate to the sequence of assignments described in this paper.

Currently we use Pascal to support the first course and Ada to support the second. We
are heading towards science-like laboratory support for both of these courses. We believe that
well designed laboratory experiments will dramatically improve the educational value of these
courses. However, the full value of laboratory support requires more than good text books and
laboratory manuals. They require Instructor manuals to guide faculty unfamiliar with this
approach, its possible goals and limitations.

59

This Page Intentionally Left Blank

60

Educational Significance of a Declarative Ada Dialect

Paul A. Bailes
Dan Johnston
Eric Salzman

Li Wang

Language Design Laboratory
Key Centre for Software Technology

Department of Computer Science
University of Queensland QLD 4072

AUSTRALIA

ABSTRACT
The essential affinity between software development and established engineering activities leads
to the supposition that software engineering education should follow engineering traditions. Not-
able among these is a strong foundation in a general vocbaulary of the relevant disciplines as
well as the teaching of the best professional practice through what amounts to good example. For
software engineering, the increased expressiveness of functional languages allows a more exten-
sive vocabulary of programming concepts to be explained. Also, the simple mathematical struc-
ture of functional programs allows the idea that programs can be developed to mathematical
quality standards to be converyed with credibility. Unfortunately, the apparent radical novelty
posed by functional programming and languages inhibits their adoption and consequent enjoy-
ment of these benefits. Our solution is to introduce functional programming into existing cultures
through preprocessor-extensions of familiar languages to support the functional paradigm. Ada
is our choice for a culture where our efforts may yield most significant benefits. Our DAD
preprocessor represents a convincing blend of Ada style with the terseness and mathematical
tractability of "genuine" functional languages.

INTRODUCTION

We expose two complementary needs in software engineering - education based on the credible
application of formal methods, and improved access to new software concepts such as these
from within established technology cultures - and demonstrate how a preprocessor-based
development of Ada satisfies them. Our DAD (Declarative Ada Dialect) significantly extends
previous work in extending Ada for functional programming [1], and provides expressiveness
actually quite beyond that usually expected of "pure" functional languages.

FUNCTIONAL PROGRAMMING AS A BASIS FOR SOFTWARE ENGINEERING
EDUCATION

Our premise is that Software Engineering (SE) is essentially similar to established branches of
Engineering (Electrical, Mechanical, Civil, etc.), and that consequently, SE Education (SEE)
should be modelled on the essential paradigms of traditional engineering education. Further-
more, when these paradigms are instantiated with the specifics of software development, the spe-
cial role of Functional Programming (FP) becomcs evident.

61

Software Engineering is Engineering

Some skeptics are confused by the absence of imposing physical results from the software
development process. The simple answer is that the "Engineering" concept is about processes,
not the form of result. Were the contrary true, how could the wide diversity in the results of the
engineering process (soaring towers to miniature circuits) be accepted. Indeed, given that we
accept this diversity as "Engineering", the extension to non-physical resulting software artefacts
seems absolutely unexceptionable.

More directly, just because somebody produces an artefact that an engineer might, does not
make what that somebody has been doing into "Engineering". We assert that any process of
construction that is to be applied with "Engineering" disciplines of quality- and cost-control is a
legitimate form of engineering.

The (Software) Engineering Education Paradigm

Inspection of typical Engineering curricula (at least within our own environment [2]) leads to the
identification of three general characteristics:

(1) the devotion of the early parts of the curriculum to basic science and math;

(2) the inclusion of non-technical, "professional" content (management, economics,
etc.);

(3) the transition from abstract basics to large-scale applied project work by the end of the
curriculum.

Introductory (Software) Engineeering

What basic science and math are appropriate for the introductory education of (software)
engineers? We respond with the question of what is the purpose of this foundational material?
We propose the following answers:

(a) Foundations are not intended to provide the content that will be applied in the initial
professional placement after graduation. The project courses that dominate the later
stages of engineering curricula are where knowledge of "real world" tools and tech-
niques are acquired.

(b) Foundations do provide a useful general conceptual vocabulary that can be used for
many purposes, not least of which is a critical appraisal of the capabilities of the "real
world" tools and techniques to be met subsequently.

(c) This initial provision of a powerful vocabulary represents the germ of the most
significant role of the foundation: to provide ("indoctrinate", if you will) a correct
"engineering" attitude (in the abovementioned terms quality- and cost-sensitivity)
toward the process of (software) construction, as opposed to the mere recitation of the
specifics of contemporary technological fads;

(d) Despite the separation in principle of foundations from applications, sensible
pedagogy will accommodate a stimulating applications flavour.

62

Functional Programming has the Answers

Corresponding to each of the above criteria for foundational material, FP responds as follows.

(a) An unnecessary but important benefit is that FP is an important SE skill. The litera-
ture on software failures (typified by [3]) is replete with accounts of software that
works but according to erroneous specifications. Rapid Prototyping [4] offers the best
prospect for specification validation by allowing SEs to present their understanding of
a customer's requirements in the customer-oriented terms of a working model. Func-
tional Languages that emphasise expressiveness and simplicity of programming at the
possible expense of execution performance are ideally suited to Rapid Prototyping [5,
6]

(b) Functional languages are simply more expressive than conventional
procedural/imperative languages. Granted, all "programming" languages are in some
sense equivalent (by the Church-Turing thesis), but this equivalence is not in a sense
related to the usefulness of languages in user- (i.e., programmer-) oriented terms. The
effective expressiveness of a language is determined by the richness of the set of
linguistic constructs that it supports. The relative richness of functional languages is
demonstrable from theoretical and pragmatic perspectives, as follows.

Theoretically, functional languages are more expressively complete [7]. Not only do
they tend to have more powerful inbuilt data structuring mechanisms (e.g. lists vs.
arrays, polymorphism), but their user-definable higher-order functions allow their
extension by simple declaration to accommodate new paradigms of control and data
structuring as they appear. In the educational setting, this means that a need to
describe in concrete some/any programming concept is more readily satisfied with a
functional language.

Pragmatically, the case is closed by the example of how languages are explained.
Denotational [8] definitions/explanations of languages proceed in essence by translat-
ing their programs into the equivalent functional programs. Functional programs are
sometimes translated into procedural programs for implementation purposes, but the
point is that when explaining programming concepts (as in an educational setting),
functional programming is a style of choice.

(c) We identify the quality/correctness issue as the important attitude issue in the intellec-
tual formation of software engineers. The idea that software can in fact be created
according to the mathematically-correct standards that prevail in other engineering
fields is especially important to convey early, given the quality-hostile environment
created by many programming tools/languages. Functional programs are demonstrably
more amenable to formal reasoning than conventional languages.

Granted, formal methods may not necessarily become industrially-prevalent for a long
time, if ever. However, it is important to provide students with an ideal standard by
which to measure the support for correctness-achievement offered by "realistic"
tools.

Note that cost/efficiency issues, while not featuring so prominently in this derivation,
are by no means cast aside. True, changes in hardware costs and performances over
the years means that absolute statements about what is "efficient" and what isn't are

63

not possible, but broad complexity issues (e.g. linear vs. polynomial vs. exponential
algorithms) are perfectly feasibly presented from within functional languages.

(d) Because functional languages are both richer and simpler than conventional languages,
the feasibility of motivating, ambitious applications programming/prototyping is in
fact increased.

Resources for Functional Programming

To teach FP successfully, we need (in addition to personnel) supporting materials in the way of
language implementations and texts. Many high-quality implementations of functional languages
exist that support the above policy to varying degrees:

Hope ftp from brolga.cc.uq.oz.au - /pub/hope
Miranda* e-mail to mira-request@ukc.ac.uk
ML ftp from research.att.com - dist/ml
Scheme read Internet news group comp.lang.scheme

but for reasons to be explained in detail below, they fail to completely satisfy curriculum needs.

Many books about FP are available, but only some are suitable for introductory teaching. Two
are especially worthy of mention.

0 Structure and Interpretation of Computer Programs [9] emphasises the development
of a powerful initial vocabulary of programming concepts, and how many common
procedural concepts are represented in functional terms.

9 Introduction to Functional Programming [10] emphasises formal methods of program
development, without detracting too much from the range of examples and applica-
tions presented.

WHY AN ADA DIALECT?

Accessing Functional Technology

The strength of functional languages - their support for an idealised view of programming - is
their practical downfall. They differ from conventional languages at user and machine levels.
User-level differences mean that potential users are intimidated by unfamiliar syntax. Machine-
level differences preclude the integration into complete systems of a mixture of components
written in functional and conventional languages (as in an incremental prototyping situation).
These drawbacks are perhaps less intrinsically-influential in an educational (compared to an
industrial) setting, but the residual and transmitted problems remain significant:

project courses which attempt to recreate industrial scenarios will suffer from the
industrial drawback of non-integrability of functional and conventional components;

in spite of our earlier arguments, anything that detracts from the industrial credibility
of a tool doesn't help its acceptability for introductory teaching, at least with some
(influential) faculty;

* "Miranda" is a trademark of Research Software Ltd.

64

" ditto for tools that can't be used in later stages of the curriculum;

* some faculty will resist learning too many new languages.

In summary, even though good implementations of modern functional languages are now readily
accessible, the effective accessibility of functional programming techniques requires their
integration into mainstream language cultures.

Influencing Practice through Education

Educational application is the best (only?) way to seriously market tools and concepts to their
prospective users. Dichotomies between ideal tools for new concepts and the "real" tools used
in practice can actually act as an advertisement against the new concepts.

Why Ada?

All the above is predicated upon the existence of a fixed, non-functional language culture into
which functional techniques have to be inserted. Ada represents such as culture par excellence.
The industrial/professional situation needs no further exploration, but in the educational sphere
that situation is now being replicated. The pressure for wider adoption of Ada as the "standard"
teaching language (obviously in support of the Ada professional culture) [11] means that the
credibility and acceptability of functional programming will be even more significantly enhanced
by its integration with Ada, and inherited support from Ada support tools.

This is the scenario to which DAD in intended to contribute, as suggested by its very name as a
complement to Ada, in both practice and teaching.

Preprocessor Implementation

Three factors influence the realisation of an Ada-flavoured functional language:

(1) the need for the integration of DAD components and Ada components;

(2) the need to stage the development of DAD itself, spiralling up to successively closer
approximations to the functional ideal;

(3) the consequent opportunity to manifest a variety of DADs, from which an appropriate
selection can be made to suit the various stages of the curriculum. We would begin
with the highest level that is closest to the functional ideal, and as project work
becomes more "real-world" -oriented, work down the hierarchy more towards "real"
Ada.

Factor (1) influences us heavily toward a preprocessor implementation. Factors (2) and (3) are
compatible with an series of preprocessors, each transforming programs at one level of the DAD
hierarchy to the next below. Finally, the conceptual accessibility represented by the design of
the language and the staged implementation is complemented by pragmatic accessibility in the
portability of supporting software, which is readily achieved by writing the preprocessor(s) in
Ada itself.

65

DAD IN DETAIL

We briefly traverse the hierarchy. See the subsequent EXAMPLES AND APPLICATION sec-
tion for more illustration.

First-dass Functions

"Raw" Ada actually possesses the defining characteristic of functional languages - first-class
procedural abstractions - albeit disguised as tasks. Genuine higher-order functions are therefore
achieved by building an applicative interface to tasking, as follows.

Function Type
Declare:

type functiontype is function [formalpart] return resultjtype;

so that function type is the class of functions with arguments formalfpart and result
resulttype, which can be another functiontype.

Function Object
Declare:

f : function type;

so thatf, when appropriately initialised, can be used (e.g. applied) as a function.

Function Instance Expression
The expression

function : function-type [formal_part I functionbody

makes an instance of the functiontype with the indicated function body which, depending
upon the resuttype for function type, can be another function instance. If present, the
.ormal_part allows renaming (but not retyping) of formal parameters. The conventional

function name [formajart] return resulttype functionbody

is retained, in effect as shorthand for

type functiontype [formalpart I return result type;

name : functiontype := function : functiontype function_body

Other abbreviated forms suggest themselves and are incorporated - see examples below.

Function Call
The expression

f [actual_part]

as usual appliesf to the actual.part. Because expressions may be function-valued, we can
in fact have

f [actual_part] ... [acual_part]

66

Lazy Evaluation

Function-valued functions provide the necessary mechanism for implementing "call by need",
i.e., "call by need" actual parameters are transformed parameterless functions with the original
actual parameter expression as body, and references to the corresponding formal parameters to
calls on these functions. The refinements of "lazy evaluation" that avoid multiple actual param-
eter (re-) evaluations, one for each formal parameter reference, are achieved by introducing cach-
ing into the preprocessing scheme.

The mechanism is extended beyond the parameter passing mechanism so that any object may be
declared as having a lazy type, so that assignments of values to it will only be evaluated on
demand.

The requirement that the DAD programmer indicate explicitly when laziness is to be availed of
is due to the hybrid nature of the intermediate levels of the hierarchy: at a level at which destruc-
tive assignment is still available, indiscriminate lazy evaluation of expressions is a recipe for
confusion on a grand scale.

Streams and 1O

A stream [121 is basically a list, of which usually both the head (element) and tail (sub-list) are
evaluated lazily. The latter property in particular admits the processing of conceptually-infinite
lists. The DAD type definition

type S is stream of T;

is simply an abbreviation for

type S is lazy record
element: T;
next : S;

end;

Expressions generating streams S will evaluate only when the "next" field is referenced. A
stream interface to input routines is straightforward, with a complementary presentation of out-
put made available.

Referential Transparency

We have emphasised so far the positive aspects of functional programming that make it such a
powerful tool. This power allows the application of restrictions on certain forms of expressive-
ness in functional languages in order to achieve mathematical simplicity but without detracting
from their overall usefulness. These restrictions involve the elimination of the assignment con-
cept from the language, and are consequently trivially implemented.

More positively, we are required now to replace "control flow" as expressed at statement level
with expresion-level counterparts. Recursive functions adequately replace loops, but conditional-
and case-expressions are necessarily introduced. Also, because destructive assignments are abol-
ished, all expresion evaluation may be made lazy.

67

Parallelism

Finally, because DAD is defined in terms of Ada, DAD programs can inherit Ada's parallel facil-
ities. While using tasking, for example, is not compatible with pure functional code, parallel ver-
sions of logical operations that extend their behaviour to the limits of computability can be
defined and exported to the pure topmost level of the DAD hierarchy. The importance and use-
fulness of such facilities is detailed elsewhere [13].

DAD IMPLEMENTATION

Status

"DAda" - an early version of DAD that eschews first-class functions but instead provides just
one of their consequences - lazy streams - has been extensively implemented to the extent of
demonstrating viability (overloading etc. is not handled). DAD as defined above has been imple-
mented up to the level of recreating streams and laziness from higher-order functions, and at the
time of writing awaits re-integration with the remaining higher levels of the hierarchy
(referentially-transparent state-free programming, parallel logical connectives).

Performance

Performance of higher-order functions leaves much to be desired, in view of their inheritance of
the notorious penalties of tasking. The fact that dynamic task creation is essential to our solution
leaves little room to hope that optimal implementations of special patterns of tasking will be of
much use. The pragmatic solution available to us is to implement the consequences of first-class
functions as special cases. For example, DAD's predecessor, DAda, provides a dedicated imple-
mentation just of lazy streams, with acceptable performance. Similarly, DAD itself actually
implements lazy types through a purpose-built interface [14] to tasking that generates fewer
tasks than required by the canonical derivation from first-class functions, still with acceptable
performance. The problem remains of integrating these different base languages into a common
family of successors in a unified Declarative Ada family tree.

The Future of Tasking

On a more philosophical note, there is a remarkable parallel between the status of Ada tasks
today and that of procedures in PL/I some twenty-plus years ago - they both represent good ideas
in program decomposition but are/were too expensive to use. Now that there are no longer credi-
ble arguments against the use of procedures on efficiency grounds, there can be no credible case
against their use (save for some critical applications where dynamic storage management can't
be trusted). Our hope is that our demonstration of the further expressive capabilities of tasking
will help stimulate an approach to the solution of their implementation problems in much the
same way as achieved for procedures long ago.

Design Refinements

As more examples are exposed below, it will become clear that the notation leaves room for
improvement. DAD should at the present be regarded as an existence proof for the approach we
are advocating, not as the limit of the technology. We welcome the reader's suggestions.

68

EXAMPLES AND APPLICATION

We briefly indicate how DAD is an adequate replacement for functional languages in the dimen-
sions of expressiveness and of mathematical tractability.

DAD is Admirably Terse

Now, there are more sophisticated measures of a languages expressiveness than the bervity with
which its programs may be written. Nevertheless, it is worth showing that one of the effective
necessary conditions for legtimacy as a replacement functional language has been met.

The "Hamming numbers" problem involves generating a list of only those numbers whose
prime factors are 2, 3, or 5 only. A Miranda-style definition of the required list "ham" looks like
(full Miranda type information given for fairness of comparison):

ham:: [num]
ham = 1 : merge (mult 2 ham) (merge (mult 3 ham) (mult 5 ham))

mult:: num -> [num] -> [num]
mult n[=[
mult n (x : xs) = (n * x) : mult n xs

merge :: [num] -> [num] -> [num]
merge (x xs) (y : ys)

= x merge xs (y: ys), if x < y
- y • merge (x: xs) ys, if x > y
= x : merge xs ys, if x = y

(Note the use of curried higher order functions for n-ary forms such as "merge": an application

merge Xs Ys

involves in detail first the application of "merge" to actual parameter "Xs" for formal parame-
ter pattern "(x : xs)" with a resulting function of one formal parameter pattern "(y: ys)", fol-
lowed by the application of that function to actual parameter "Ys".)

The DAD rendition assumes

package lists
-- makes a type "list" witl- LISP operations "cons" etc.
-- quite possibly an interface to streams

end lists;
use lists;

It proceeds:

type int list list Is function (integer) return listlist;
type listlist Is function (list) return list;
type list list list is function (list) return listlist;

function mult int list list (n : integer)
function .listlist (xs : list) is

69

begin
If xs = nil then nil
else cons (n* car (xs), mut (n) (cdr (xs)))
end If

end;

function merge "list list list (xxs : list)
function "listlist (yys "list) is

x integer car (xxs);
y integer car (yys);
xs list := cdr (xxs);
ys list cdr (yys);

begin
If x < y then cons (x, merge (xs) (yys))
elsif x > y then cons (y, merge (xxs) (ys))
elsif x = y then cons (x, merge (xs) (ys))
end If

end;

ham list :=
cons (1, merge (mut (2) (ham)) (merge (mut (3) (ham)) (mut (5) (ham)))

The greater length of the DAD can be attributed to the generally busier concrete syntax of Ada as
inherited by us, particularly: the lack of a pattern-matching style of formal parameter
identification; and the need to surround actual parameters (or lists) with additional parentheses.

On the other side, note how some semantic innovations contribute to our faithfulness to the func-
tional style and our maintenance of overall comparability to the Miranda rendition: conditional
expressions; and recursive lazy constants ("ham").

If greater terseness is required, currying can be supplanted with conventional parameter lists, viz.

function mut (n : integer, xs : list) return list is
begin

if xs = nil then nil
else cons (n * car (xs), mut (n, cdr (xs)))
end if

end;

function merge (xxs : list, yys : list) return list Is
x "integer := car (xxs);
y "integer car (yys);
xs "list := cdr (xxs);
ys list cdr (yys);

begin
if x < y then cons (x, merge (xs, yys))
elsif x > y then cons (y, merge (xxs, ys))
elsif x = y then cons (x, merge (xs, ys))
end if

70

end;

ham :list:= cons (1, merge (mutt (2, ham), merge (mult (3, ham), mult (5, ham))))

As well as shorter function headings, explicit function type declarations are omitted.

Formal Methods

A classic example is the demonstration that the function "len" to calculate the length of a list
distributes over "append" which concatenates two lists. In a "genuine" functional language
(Miranda-style) the definitions would appear as pattern-matching equations (equation numbers
for reference):

(1) len[]= 0
(2) len (x : xs) = 1 + len xs

(3) append [] ys = ys
(4) append (x : xs) ys = x : append xs ys

The proof that

len (append Xs Ys) = len Xs + len Ys

proceeds by induction over "Xs" as a sequence of transformations following the equations:

Case Xs = nil

len (append [Ys)
= len Ys (3)
= 0 + len Ys (arithmetic)
= len[] + len Ys (1)

Case Xs = x xs

len (append (x : xs) Ys)
= len (x : append xs Ys) (4)
= 1 + len (append xs Ys) (2)
= 1 + len xs + len Ys (Inductive Hypothesis)
= len (x : xs) + len Ys (2)

Note the intimate connection between the proof and the style of function definitions by recursion
equations.

Formal Methods and DAD

Such equational notation is not available in DAD on the principle of retaining an obvious Ada
style. However, from DAD function definitions, equational-style axioms defining function
behaviours can be derived, allowing formal manipulations in the standard transformational style.
This permits the employment of DAD in conjunction with the best of available supporting texts
[101.

The precisely corresponding DAD function definitions are (assuming definitions of types inher-
ited from previous example):

71

use lists;

type listint is function (I list) return integer;

function len : listint (xs: list) Is
begin

If xs = nil then 0
else 1 + len (cdr (xs))
end If

end;

function append "listlistlist (xs "list)
function "list list (ys "list) Is
begin

If xs = nil then ys
else cons (car (xs), append (cdr (xs), ys))
end if

end;
By inspection, the Miranda-style equations are easily recoverable from the DAD function
definitions. However, the important criterion for the further development and refinement of our
notation is recognised as the achievement of a closer approach to the equational ideal whilst
maintaining an Ada flavour.

CONCLUSIONS

The following points are established.

* Software Development is a form of Engineering.

* Engineering Education relies on sound foundational material.

* Functional Programming provides the foundation for Software Engineering.

* Access to Functional Programming is enhanced through its insertion into existing
language cultures.

* Ada represents a language culture of increasing significance in education and practice.

• Ada-flavoured Functional Programming is best achieved through a preprocessor-
implemented dialect

* DAD captures the Functional paradigm adequately.

* Ada tasks need better implementation.

" DAD notation requires continuing refinement.

" The distance between Ada-flavoured Functional programming in DAD, and the ideal
as represented by Miranda etc., that might appear to detract from DAD's pedgaogical
usefulness, is easily bridged.

72

REFERENCES

[1] Bailes, P.A., Johnston, D.B., Salzman, E.J. and Wang, L., "DAda - an Ada Preprocessor
for Functional Programming", Proceedings ACM 1990 TRI-Ada Conference, pp. 114-123,
Baltimore (1990).

[2] Lloyd, B.E., "Professional Engineering in Australia, Antecedents and Futures", Australa-
sian Engineering Education Conference, Preprints of Papers, Brisbane (1980).

[3] Neuman, P.G., "Risks to the Public", ACM SIGSOFT Software Engineering Notes, vol.
10, no. 5 (1985).

[4] Budde, R., Kuhlenkampe, K, Mathussen, L. and Zullighoven, H. (eds.), "Approaches to
Prototyping", Springer, Berlin (1984).

[5] Henderson, P., "Functional Programming, Formal Specification and Rapid Prototyping",
IEEE Transactions on Software Engineering, vol. SE-12, no. 2 (1986).

[6] Turner, D.A., "Functional programs as executable specifications", in Hoare, C.A.R. and
Shepherdson, J.C. (eds.), Mathematical Logic and Programming Languages, pp. 29-54,
Prentice-Hall, London (1985).

[7] Halpern, J.Y. and Wimmers, E.L., "Full Abstraction and Expressive Completeness for
FP", Proc. Symposium on Logic in Computer Science, pp. 257-271, IEEE (1987).

[8] Stoy, J.E., "Denotational Semantics: The Scott-Strachey Approach to Programming
Language Theory", M.I.T. Press, Cambridge (1977).

[9] Abelson, H., Sussman, G.J. and Sussman, J., "Structure and Interpretation of Computer
Programs", M.I.T. Press, Cambridge (1985).

[10] Bird, R. and Wadler, P., "Introduction to Functional Programming", Prentice-Hall Interna-
tional, London (1988).

[11] DARPA, "Curriculum Development in Software Engineering & Ada" (1991).

[12] Landin, P.J., "A Correspondence Between ALGOL 60 and Church's Lambda-Notation:
Part I", CACM, vol. 8, no. 2, pp. 89-101 (1965).

[13] Bailes, P.A., Gong, M. and Moran, A., "An Expressively-Complete Functional Language",
Technical Report 185, Department of Computer Science, University of Queensland, Bris-
bane (1991).

[14] Bailes, P.A., Johnston, D. and Salzman E., "A General Lazy Data Structure Extension for
Ada", Proceedings of the 1991 Ada in Aerospace Conference (to appear), Rome (1991).

73

This Page Intentionally Left Blank

74

A Tool Supporting Programming in the Large for the
Introductory Software Development Courses

Jaime Nifio
and

Howard Evans
Department of Computer Science

University of New Orleans
New Orleans, La 70148

e-mail: jncs @uno.edu, hecs @ uno.edu

Abstract
There is a conspicuous need to revise the teaching methodology used in introductory programming courses to

provide students with a foundation for appreciation of the issues involved in the development of modem software sys-
tems. An important teaching component in software development must be software composition. In large measure, stu-
dents are introduced to top-down development as a tool for system decomposition; software composition is limited to
the components they developed themselves, along with the standard I/O packages.The objectives of this paper are two-
fold; first to show that the rich set af program decomposition/composition tools provided by Ada gives the educator a
great opportunity to raise the level of program development framework from statements and control structures to li-
brary units via reusability. The second is to introduce a software tool that allows the instructor to provide a environment
for the use of these Ada characteristics as early as possible in the curriculum.

Introduction
There is an urgency to produce software engineers who have the methodologies and the skills

to help industry address the software bottle-neck created by the high demand of software systems.
The programming language Ada, as well as other modular oriented languages, have provided in-
dustry and education with tools to develop and teach these kinds of methodologies. Object orien-
tation in particular and software reusability in general are methodologies which look promising in
this problem.

In general, one important tactic towards improving software development productivity and
quality is via software reusability. It has been recognized for quite a long time that one of the fun-
damental causes for the software bottleneck is the fact that new software systems are developed
from scratch, for the most part. This is clearly a wasteful use of resources. Studies have shown that
much of the code in a given software system can be found in other systems [1,2,3]. Other studies
have been made to measure reuse of software; one of them [9] indicates that less than 15 percent
of new code is needed in a new system. A lot has been written [1,2,3,15] on the possible benefits
of software reuse; among the benefits are the need not to re-invent the wheel, and the opportunity
to develop new software based on software that has already been shown to be correct. However,
while software reuse is an approach that promises great payoff in the solution of the software crisis,
it is an approach that remains unexploited. Reasons that have been given for the lack to fully ex-
plore this alternative range from the psychological, (the non-invented here syndrome), to the tech-
nical and the economical 1 1.

On the other hand, software reusability demands appropriate software tools, programming lan-
guages and software development methodologies to exploit this technique. The main issue to dis-

75

cuss in this paper is the foundation that is given to beginner programmers so that they will see the
benefit and make use of software reusability; and than in particular, we expect they will recognize
program development as an activity which does not start with an empty screen from which to build.

Program Development Framework
In large measure, students are introduced to top-down development as a tool for system de-

composition; software composition is limited to the components they developed themselves, along
with the standard 1/0 packages. At the same time students usually develop complete programs,
which for the most part and due to time constraints, are small and very simplistic; these programs
have no resemblance in any form or shape to the software that is available to them in PC's and in
workstations.

Another characteristic of programs that students develop is that these programs are completely
understood by them, due to their size. Thus, students develop a programming metal framework
with the following characteristics:

" programs are started from scratch

" programs are developed individually; one persons's effort

* program's implementation details are well understood

" program complexity is at the reach of the programmer

" programs are static from the point of view of development

" code development is for complete programs

" program methodology: keep trying until it works

This software development framework becomes the standard by which they will routinely use
with success; it is only until students are confronted with large and complex enough systems when
this framework falls apart; they are completely unaware of this fact, and will continue trying what
has proven successful on their eyes.

One important teaching component in software development must be software composition.
Ada facilitates software composition using functions, procedures and packages via separate com-
pilation. These library units can be used for development of programs by components, for team
programming and for program reusability among others.

The task of an educator using Ada, is to provide an environment to instill in the student the use
of these facilities as part of the development process; this provides the educator with an opportunity
to raise the software development abstraction level of the student. In most instances these experi-
ences are given to the students in a junior-level course in software engineering for instance, or via
courses where projects of a rather large size are required. We claim that at this stage the educator
is confronted with an existing programming methodology picked up by the student in the early pro-
gramming courses, where program development is reduced to statement-at-a-time approach, and
with the development characteristics as described above. The instructor must then set out to undo
this mind-set in particular; the instructor must break the news to them that software development
is not as straightforward as they have experienced; the instructor must argue against the pragmatic
methodology that has proven successful to them until then; in general the instructor must set put to
enlarge the abstraction scope to allow for the introduction of the problems, and the solutions, pre-

76

sented by the development of large and evolving software systems.

One important experience that a student should be exposed to early in the curriculum is team
programming in particular, and of programming in the large in general. It is also fruitful to provide
students with interesting problems whose team-based solution allows for the development of solu-
tions that are closer in feel and flavor to software they routinely use in PC's or other environments.
With the educational environment constraints, which among other include time and curriculum ma-
terial it is rather difficult to provide the student with these experiences as early as possible in the
curriculum.

From the teaching of software development view point, we feel very strongly about the need
to instill in the student the reuse of library units and team work. Moreover, these two activities
should be the core of software development education. We must produce graduates whose software
development framework naturally encompasses these two activities. The goal for the use of these
Ada facilities is to train students to enlarge their point of view when developing software. We must
drive home the message that software development, for the most part, does not (should not) start
from scratch, that is not an activity to be carried out within a software vacuum, as a solitary activity.
These efforts are expected to raise their level of abstraction; a higher level of abstraction will mo-
tivate them to ask for and use sophisticated software development support tools effectively in their
work-place; it will also give them opportunities to think and develop programs with a software li-
brary in mind, for reuse and for enlargement of it. In other words, they should think in terms of
refining existing software or extending it, rather than always starting by building new software
from the specifications. We must set the proper mental software habits as well as the proper soft-
ware development framework in the early stages of the software development learning curve.

A methodology for teaching programming in the large

A goal of this methodology is to avoid the creation of the mental mindset of programming one-
statement-at-a-time in an environment isolated from software and people as described earlier. The
main underlying philosophy of this methodology is to teach the use and development of program
(system) components within a programming team, and avoid the teaching of developing entire pro-
grams as the main goal.

In the introductory programming course using Ada, the student is initially given an overview
of software development life cycle; software system structure is introduced from the implementa-
tion point of view using Ada; in particular, they are introduce to program structure using Ada; ma-
jor components of this structure are: a driver (or main procedure), and library units such as
subprograms and packages.

Students are initially introduced to functions and procedures as programming components; in-
stead of being taught the writing of main programs with components. Using subprograms (func-
tions and procedures), in a spiral approach, students are introduced to control units and software
decomposition. Their code writing is only for subprograms. They are introduced to read and use
library units, such as package specifications. They use library units in their subprograms. They are
taught top-down design which they can use in the development of the subprograms they must im-
plement; they are also introduced to bottom-up design, to understand the use of the library units
available.

The next step in the learning process is the writing of drivers (also called main procedures)
which will strictly use library units; the design methodology exemplified here is bottom-up design,

77

to understand the use of the library units available.

A last step in the learning process of this methodology, students are given complete programs
to implement, where they must supply the driver and some program components; others will be
available through the library. The design methodologies to use here is top-down and bottom-up.
The goal here is to develop a design which will identify the components of the program (functions
and procedures) and the identifications of those parts which will come from a library, and those
which need to be developed.

The main gains of this methodology are:

" large abstraction scope, early in the learning process

• control of the methodology used to write programs

" an audience more prone to understand and appreciate software engineering prob-
lems and solutions

* stress in reading of specifications and code written by others

" satisfaction in writing parts of interesting and complex programs

Turnin facility

The turnin facility to be described below, can be used in a straightforward manner to allow for
a control submission and testing of programming assignments. One of the points of this paper is to
show how it can support the teaching methodology as described above; in particular, a methodol-
ogy of programming where the student does not develop complete running programs from the start,
but only component of a program. The rest of the program is provided via library units provided
by the instructor.

In essence turnin is a facility which allows for a control submission, testing of stude1 ts pro-
grams, and output analysis.

By control submission we mean the activity which allows

* the description of the software component which will produce a running program

• the source of each of the components

* the hierarchical organization of the components

By testing we mean the, possibly multiple, execution of the resulting program after the con-
trolled submission phase using hidden data.

By output analysis we mean the automated examination of the program's output.

Specifically, the Turnin Facility consists of several command procedures that perform the fol-
lowing tasks:

* Helping instructors set up the facility for a specific assignment (TurinSetup,
Turninshow commands)

* Assisting students in turning in their programs (turnin command)

* Testing student programs according to the instructor's specifications (turnin com-

mand)

78

" Keeping track of the students that have turned in (turnincount command)

• Cleaning up after an assignment is completed (turnin_cancel, Turnin-delmail com-
mands)

What follows now is a description of each of the major commands available through the Turnin
facility.

Turninjsetup Command
This is an interactive process where the instructor specifies the following information:

" Assignment name: it will be used by students to invoke tumin.

" Language: source code language.

* Due date: date and time when program is due.

• Compilation qualifiers: specification of appropriate compilation switches.

* the list of modules to be compiled during the turnin: specification of the number of
modules to be submitted by a student, and of those submitted by other sources.
Also, a specification of compilation order, to indicate the program's driver.

* link qualifiers: specification of appropriate link switches

" data files: specification of the data files to be used per run.

* files echoed: specification whether data files used for testing will be echoed.

" command file before compilation: specification of a command file to be executed
before compilation.

* .command file after compilation: specification of a command file to be executed
after compilation.

" command file after each execution: specification of a command file to be executed
after each execution.

It is possible to provide a command file to be executed before compilation. It will receive one
parameter which is a copy of the compilation list after filling in all of the student module names.
This command file can do what it wants with this list of files. The use of it is to complete source
files submitted by students, as a some sort of implicit include, by inserting code in source files in
the appropriate places. The command file must invoke a program that will do the desired source
change.

It is also possible to provide a command file to be executed after the compilation step in the
turnin process. After all of the modules involved in the turn in are compiled (student and instruc-
tor), this command file will be called. It will receive one parameter in P1 which is a copy of the
compilation list after filling in all of the student module names. This command file can do what it
wants with this list. We have used this capability to do a DIFFERENCES between the student's
source file and the original.

It is also possible to provide a command file to be executed after each data set is run. This com-

-79

mand file will receive three parameters in P1, P2, and P3. P1 will be the actual file specification for
the output file which was just created by the student's program. P2 will be the data set number (1,
2, 3, ...) of this run. P3 will be the status value returned by executing the student's program; it can
be used to determine whether the student's program even worked. If you want to run a program
which will read and verify the contents of the output file (automatic output check!) the command
file must invoke a program (supplied by instructor) to do the output analysis.

Turnin_show Command

This command display the turnin.setup characteristics of a given assignment.

Turnin Command

This command will be used by the students to submit their program assignments. The assign-
ment name must be specified. This process is interactive where by the students will be prompted
for the name of all the modules which they must submit to form a complete compilation unit. If the
files specified in this step exist the turnin command proceeds to compile, link and execute the stu-
dents program. Failure in compilation will terminate the process. Every time that a student issues
a Turnin command and specifies successfully the files to be used, the instructor will receive a mail
message indicating the student name, the assignment name and the time when it was issued. At the
end of the turnin process, the students is issue a hard copy of the source listing of the program and
the output generated. This file is handed out to the instructor by the student.

Turnincount Command

This command checks and produce a list of the students who submitted the assignment, the
time submitted and the number of times the made a submission of the assignment.

Turnincancel Command

This will erase the setup information on that specific assignment making students unable to
turn in any more programs.

Turnin_delmail Command

When you have finished with a specific assignment you may clean up your mail from this as-
signment's turnin messages. As a security precaution, this command will delete only the turnin
messages found in the Mail folder TURNIN_MESSAGES. Notice that turnin messages end up in
that folder after they have been counted with the TURNINCOUNT command.

Currently, the Turnin Facility supports several of the VAX- 11 compiled or assembled languag-
es. This list includes Ada, C, COBOL, FORTRAN, MACRO, Pascal, Icon, LiSP. The reason for
this list, is based on the fact that these languages are used in different computer science courses for
programming assignments.

This software tool as it currently exists, is implemented to run in a VAX/VMS environment.
No ports to other environment has been done yet. We have been using this facility for many years.
It have proven very effective for assig ment submission and testing. We expect to have an imple-
mentation of this kind of facility for a Unix environment by the end of the fall of 91.

80

Turnin facility as an Environment for Programming in the Large
The Turnin facility directly supports the methodology as described above. Students submit

parts to form a working program and the facility puts the program together to form a complete run-
ning program.

In particular, the tumin can be setup to:

* accept one or more library units from the student (functions, procedures, or main
procedure)

* provide all others library units (packages, subprograms, main procedure) to form
a running program.

* hide language features that prove difficult to introduce at a given level (such as in-
stantiation of generics, declaration of user defined types)

* test program, and specifically user provided units.

" generate an annotated analysis of output generated by program.

Using this Turnin facility, the instructors can place the students in a team environment, where
the instructor and assistants form one team and each student or group of students form other teams.
The main goal of this approach is to introduce programming from early in the learning cycle as a
complex activity which requires many people to develop interesting programs and software sys-
tems.

Future work
Currently the authors are in the process of implementing a Software Development laboratory

around a Sun server and 25 Sun stations, supplied with windowing environment and case tools to
continue our effort of increasing the programming scope and abstraction level as early as possible
in the learning process. We are currently developing a curriculum based on a spiral introduction of
tools and techniques used to develop modem-day software; this curriculum is to be implemented
in the three core programming courses our students must take. These courses will be four-credit
courses, where one hour per week will be dedicated to supersived laboratory instruction. In this lab-
oratory students will be introduced to use of tools to support programming as a team activity. In
particular we are redesigning the Tumin facility to provide students with a control testing facility
of their software with data provided by the instructors, producing annotated output where needed.

Conclusion
The programming methodology currently used to introduced programming as an activity,

needs to be revised and must to be supported with proper software tools to be effective. Students
that have finished two semesters of programming classes acquire a very distorted view of program
development. This view must subsequently be fought against when students are introduced to the
issues of developing large. complex and evolving programming system. The methodology present-
ed and supported by the Turnin facility, we believe, is an step in the right direction; software sys-
tems should not be created from scratch, in a software vacuum and a solitary activity; we must not
use and encourage teaching methodologies which support this view.

81

Bibliography
[Il]Biggerstaff, Ted, Perls, Alan, eds. Special issue of IEEE Transactions on Software

Engineering on software reusability, SE- 10(5) 1984.

[2]-Biggerstaff, Ted, Perlis Alan, eds. Software Reusability. Vols I, II. ACM Press. Addison-
Wesley Pub. Co. 1989.

[3].Biggerstaff, Ted, Richer Charles. Reusability Framework, Assessment, and Directions. in
[2]

[4].Dijkstra, E. W. On the Cruelty of Really Teaching Computer Science. A debate on
Teaching Computer Science. CACM, Vol 32, Num 12. Dec, 1989, pp1398-1404.

[5].Jones, T.C. Reusability in programming: a survey of the state of the art. Special issue of
IEEE Transactions on Software Engineering on software reusability, SE-10(5) 1984.

[6].Meyer, B. Reusability : The case for Object Oriented Design. in [2] Vol II. pp. 1-34

[7].J. Nifio. "Object Oriented Models for Software Reuse". Proceedings of the IEEE
Southeastcom. March 1990.

[8]-J.Nifio. "A Design Methodology for Object-based Languages". Proceedings of the Fifth
Annual of the Ada Software Engineering Education and Training Team (ASEET)
Symposium. August, 1990

82

A Top-Down Toolbox Approach to Teaching
the Ada Programming Language

Thomas B. Hilburn and Iraj Hirmanpour
Department of Aviation Computer Science
Embry-Riddle Aeronautical University

Daytona Beach, FL 32114

ABSTRACT

This paper discusses a multi-year project at Embry-Riddle
Aeronautical University that is using a new instructional strategy
to develop three introductory courses: Computer Science I and
Computer Science II, and an Algorithms and Data Structures course.
The instructional strategy concentrates on use of Ada and a
top-down approach to teaching introductory computer science courses
that is centered around realistic, moderately complex software
systems that would be of interest to a freshman computer science
student. With this approach, students are provided with a toolbox
that will contain a set of software tools that will be used in
implementing and modifying parts of the software system. In the
first course students view the software system and the software
tools as "black boxes" and concentrate on how to use the black
boxes. In the second course students look inside the boxes and
concentrate on how to implement the lower level details of the
software system and the toolbox. In the third course the students
analyze and enhance the data structures and algorithms used in the
first two courses. The project is in its first year and it is
expected to take at least three years to complete.

INTRODUCTION

This paper describes a new approach to teaching introductory
computer science courses. The purpose of the new approach is to
show at an early stage (in the first course) the relevancy of
concepts taught in the computer science curriculum. Students at a
very early stage are introduced to a complete computer software
system. The student is also provided with a set of software tools
that will allow the student to implement and modify parts of the
software system. The student will initially view the software
system and the set of tools as "black boxes" that can be
conveniently manipulated to produce meaningful results. As
students progress through the introductory courses they will be
exposed to increasing levels of detail about the makeup of the
"black boxes". Although aspects of this approach have been used in
introductory courses (see [Pattis,1990]), the authors argue that
such an approach should be a the center of the lower level
programming courses. This "top-down'' approach to teaching computer

83

science should result in increasing students' interest in the
subject, and it is hypothesized that this heightened interest will
contribute to the reversal of the decline in freshman interest in
computer science.

This "top-down toolbox Ada based approach" is being implemented by
the Aviation Computer Science Department at Embry-Riddle
Aeronautical University (ERAU) over a three-year time interval.
The project involves the development of three courses: Computer
Science I, Computer Science II and an Algorithms and Data
Structures course. This paper is an interim report on the progress
of the project and is intended to promote discussion of the merits
of such an approach.

PROBLEM STATEMENT

The authors believe one of the reasons for lack of interest in
science and engineering lies in the fact that the science
curriculum is often presented in such a highly theoretical and
abstract way that the contemporary student fails to see the
relevance to real life problem-solving and, therefore, loses
interest and commitment. Science and engineering education
traditionally has made the assumption that students need to obtain
a large body of basic knowledge and fundamental concepts before the
relevancy of the knowledge and concepts can be brought into the
curriculum. Most curricula are based on this assumption and
students do not experience real life problem-solving until they are
juniors or seniors in their field of study.

The traditional approach is therefore "bottom-up" and assumes that
students must master details of many individual concepts before
their relationship to the solution of real-world problems can be
shown. Typically, it is not until the latter part of the junior or
during the senior year that students begin to see how the
individual concepts they have been learning can be synthesized and
incorporated into a solution of a problem that is both interesting
and realistic. In the first two years of a typical computer
science curriculum, students are taught how to write code in some
modern high-level language and introduced to the concepts of
structured programming, design and analysis of algorithms, data
structures, and computer organization. The examples used to
illustrate these concepts are usually artificial and often fail to
show real-life relevancy.

This bottom-up approach has two disadvantages:

(1) it fails to show relevancy of concepts at an early stage,
causing some students to lose interest in the subject;

(2) those who succeed leave the introductory courses with the
notion that attention to detail is the first step and the
most important part of problem solving.

In an upper division software design course the paradigm is

84

reversed and conceptualization and organization of the problem
solution is emphasized as paramount to the problem-solving
activity and students are taught to postpone details. This
mid-course reversal of instructional strategy confuses students and
many graduate without a full understanding of the problem-solving
approach that higher level courses stress.

A similar paradigm is followed in teaching Aerospace Engineering,
an engineering program offered at ERAU. In order to design an
airplane students need to know concepts from aerodynamics, fluid
mechanics, thermodynamics and aircraft structures. These concepts
are dependent on subjects such as physics and mathematics. It
takes a student three years of concept study before he/she is faced
with the central problems and issues of aircraft design in an
aircraft design course.

Students are more apt to enroll and stay with science and
engineering programs that show relevancy early. The Aeronautical
Science (flight) program at ERAU is such a program. Aeronautical
Science students can begin flight training during their freshman
year; as they progress through their curriculum they can see the
relevancy of such courses as mathematics, physics, aerodynamics,
and meteorology. There are other examples of such programs and
courses. For example, in an introductory accounting course
students solve realistic problems. Computer Science, on the other
hand (along with many other science and engineering programs),
takes a longer time to show relevancy and it is believed that this
is one of the factors that contributes to the higher attrition
rates and smaller enrollments in the program.

PROPOSED SOLUTION

General Approach

Rapid advances in technology during the past three decades have
had a profound impact on lifestyles and attitudes. Improvements
in transportation and communication brought on by computers,
telecommunication and aviation has accelerated the exchange of
information and generated new knowledge and ideas at an explosive
rate. Young people see their learning experience in this context
and, as a result, they expect (and even demand) relevancy in their
educational activities. We believe that new instructional
strategies that have as one of their goals showing relevancy at
the introductory level will attract and retain more students in
the discipline.

Instructional Strategy

To test this hypothesis, it is proposed to change the
instructional strategies and materials in the introductory
computer science courses. Rather than use the traditional
bottom-up method of instruction, we propose a top-down approach

85

that first exposes the student to a realistic, moderately complex
software system (or several such systems) that would be of
interest to a freshman computer science student. In addition, the
student would be provided with a toolbox that would contain a set
of software tools that would be used in implementing and modifying
parts of the software system. The toolbox would include such
things as the following: a set of generic data structures (sets,
ordered lists, stacks, queues, trees, and graphs); a package of
graphic tools; a package of math functions; a package of string
operations; and a set of commonly used utilities such as
input/output, and sorting and searching. Initially, the details
of the implementation of the software system and the set of
tools would be hidden from the student and he/she would view them
simply as "black boxes" that yield output when specific inputs are
Provided. In fact, in the first course the student would not see
any of the details of what is "inside" a black box. Rather the
student would learn about the functionality of the black boxes and
how to use them. For example, in Computer Science I, students
might be given an assignment to set up a scheduling system for
student pilots that requires queuing a set of student records. The
student would have to understand what a "queue" abstract data type
is and how to use the "queue" black box provided in the toolbox.
However, the student would not have to know or understand, at this
point, how the queue is implemented (arrays or pointers, linear or
circular, etc.). In essence, we propose that a "fourth-generation"
type programming environment be used in teaching Computer Science
I.

In Computer Science II, the student would continue with the study
of one or more complete software systems. The student would be
exposed to lower levels of detail about the system and would look
inside the black boxes that were used in Computer Science I. The
emphasis in this second course would be on implementing the data
structures and algorithms used in the first course. For example,
students would implement the queue tool used in an assignment in
Computer Science I.

Following Computer Science II, students would take a course in
which more advanced features of data structures and algorithms are
studied and in which there is an emphasis on analysis and
comparison. Hence, the student first learns to "use", then learns
to "implement", and finally learns to "analyze".

Instructional Software Considerations

We are currently developing software systems that address several
different aviation/aerospace problems that are appropriate for use
in our introductory computer science courses. One, for which we
have built an prototype version, is an "Automated Flight
Planning/Scheduling System" (AFPS) that can be used by a student
pilot to write a flight plan and schedule a flight. Three other
systems being developed are a "Spaceship Docking Simulation" (SDS)
that simulates simulate dockihg of a spaceship and an orbiting lab

86

(see [Pooch,1989]), a "Aircraft Detection System" (ADS) that
detects distances and bearings between aircraft in an airspace (see
[Hilburn,1991]), and an "Operational Flight Control System" (OFCS)
that will simulate an aircraft avionics system that provides
aircraft control functions and displays aircraft status
information. We are currently using the Ada programming language
in our introductory course and, hence, all systems will be
developed in Ada. We believe Ada best captures the spirit of the
proposed instructional strategy because its "package" concept
supports the abstraction and information hiding that is a crucial
element of our approach. An Ada package specification for a tool
(or group of tools) would provide the student with a "black box"
view of a tool.

In addition, we are in the process of developing a toolbox that
supports the course objectives. Although there are some
off-the-shelf tools available, the proposed instructional strategy
dictates that we develop the toolbox in-house. First, since the
tools are not just to be used for software development but will be
used by the instructor as a tool to teach computer science
concepts, there are special design considerations. (e.g. there are
pedagogical considerations in Ada coding related to context
clauses, private types, generic program units, input/output and
exception-handling.) Second, since these tools will be used as
examples to illustrate programming principles it is essential that
we have the source code for all the tools.

Course Content

An important part of our project involves the development of a
comprehensive course outline, with supporting material, for each
of the introductory courses. The outlines will provide topics to
be covered along with a list of objectives for each topic,
suggested activities and assignments, and a description of
supporting material to be used. A great deal of this work has been
completed for Computer Science I and less detailed outlines have
completed for the other courses. The Appendix contains a
descriptions for some of the topics for Computer Science I. It
gives the flavor of the instructional strategy and illustrates some
of the materials and activities to be used in the top-down black
box approach:

a. In Topic 1, Introduction to Software Systems, the
students get a look at a complete system definition and
a user's manual, and get to try out some test data on a
system of moderate complexity - a set of activities not
usually included anywhere in the first course.

b. In Topic 2, Top-Level Design of a Software System, the
student gets to do some meaningful documentation. For
example, the student might rewrite some portion of the
user's manual that he/she found unclear or incomplete, or
the student might add some documentation about the
purpose of a program module. In the traditional
introductory computer science course, a student's first

87

experience with documentation typically involves a
fifteen line program that only involves text input/output
- the student really cannot see the need for such work
and resents having to do it.

c. In Topics 4 and 5, Introduction to Subprograms and
Control Structures, the student will be involved in
developing and modifying a moderately complex system
using modules already developed. In one sense, the
student will be applying the same concepts (control
structures and subprograms) as in a traditional course,
but he/she will be using them in a context that is more
interesting and relevant, and that emphasizes software
engineering principles associated with the development
of large software systems.

IMPLEMENTATION ENVIRONMENT

The proposed concept is a natural outgrowth of ongoing pursuits of
ERAU's Aviation Computer Science Department. An "aviation computer
science" curriculum has been developed at ERAU that follows the
Association for Computing Machinery (ACM) and the Computer Science
Accreditation Board (CSAB) curriculum guidelines for undergraduate
computer science. The program integrates computer science with an
aviation applications focus. The program has several innovative
(perhaps unique) features. Two features germane to this discussion
are: integrate software engineering principles throughout the
curriculum including the first programming course, and show
relevancy of computer science to the solution of aviation/aerospace
problems.

In support of software engineering integration, the department has
adopted Ada as the core programming language in all software
development courses, including the introductory programming
courses. In addition, the department has developed a "Software
Development Manual" that describes a software methodology that will
be used in all courses involving software development. Students
are exposed to elements of the methodology (along with other
formalities of software enginecring) in the introductory computer
science courses. Students develop and implement their programs in
Ada running on a network of Sun Workstations running in an X-window
environment. Although the toolbox is not complete we have
developed initial versions of the following: a set of generic data
structures; a package of graphic tools; a package of math
functions; a package of string operations; and an input/output
package.

In support of aviation applications, the department has a unique
resource: the Airway Science Simulation Laboratory (ASSL). The
ASSL is staffed jointly by faculty from the Computer Science
Department and the Aeronautical Science Department. The
laboratory includes the elements of the National Airspace System
(air traffic control simulators, pilot training simulators,
meteorology laboratories, etc.) in an interactive, intelligent
simulation training configuration. Advanced students are afforded

88

the opportunity of working with faculty on aviation projects. Lab
facilities and research projects provide real-world practical
experiences to our students that are not normally found in an
undergraduate program.

FIRST YEAR EXPERIENCES

Since 1987 the Algorithms and Data Structures course at ERAU has
been taught using the Ada programming Language. In 1989 Ada became
the primary language in the computer science curriculum. and it was
introduced in the first course, Computer Science I. In the first
year it was taught in the typical "bottom-up" fashion. In the
1990-1991 academic year the "top-down" approach discussed in this
paper was used in teaching Computer Science I and Computer Science
II to approximately 100 students. Although the software and other
r~ipporting material was not complete, the course objectives and
instructional strategy were based upon the concepts we have been
discussing. Our software system examples and toolbox compnents
consisted of a combination of commercial products and locally
prepared products. The textbook used, [Volper,1990], was selected
because, of the available texts, it most closely followed the
course philosophy. The student laboratory used a Meridian
AdaVantage compiler ruining on Sun Workstations and a PC version
was used for classroom demonstrations. Although the instructors
had some initial problems with application of the new approach
(mainly due to the problems with instructional support material),
their overall opinion of the results was very positive. The
students taking the courses gave generally hiqh marks to the "top-
down toolbox" approach; however, in many cases they did not have
anything with which to compare it.

It is too early to make any definitive statements about the
viability of our new approach, but informal assessments of students
completing the "top-down" Computer Science I comparea to the
previous "bottom-up" Computer Science I (using Ada and Pascal) show
improvements in attitudes and cap'abilities Yelated to the
principles of software design and development. As additioal
instructional support material is developed and as students move
through the curriculum into their upper division computer science
courses, a more realistic and meaningful evaiuation can be carried
out.

CONCLUSIONS

We expect that our proposed approach to teaching the introductory
courses will increase student interest in the study of computer
science and will decrease the attrition rate in these courses. In
fact, we believe that the success of this approach will motivete
new students to enter our aviation computer science program. We
also feel that students who complete these courses will go on to
their upper division courses'with a better understanding and

89

appreciation of the computer science discipline. It is expected
that the aviation computer systems developed for the first two
courses will be used in subsequent courses by exploring
implementation details and modifying and enhancing the systems. As
students learn concepts in the areas of data structures, graphics,
artificial intelligence, and simulation, they will be able to apply
them to the systems that they are already familiar with. These
students will be able to take on more challenging and realistic
projects in their junior and senior years and will graduate with
better problem-solving skills. They will enter the job market with
a better appreciation for the complexities involved in the design
and development of large scale software systems.

Finally, we believe this new approach will help the faculty become
better teachers of computer science. The software systems and
tools, and the outline with its supporting materials will provide
a rich resource that will assist the instructor in organizing and
presenting the course concepts. The aviation software systems
will provide a focus for the introductory courses that is not
available in current commercial courseware. The project materials
will also support appropriate uniformity between various
instructional approaches to the same concept and provide
continuity between different concepts.

REFERENCES

Hilburn, T.B., "The Use of Ada in the Simulation of An Aircraft
Detection System", Proceedings of 1991 Conference on Simulation
Technology, Orlando,FL, October 1991.

Pooch, U.W. and Tanik, M.M., An Ada Courseware, Meridian Software
Systems Inc.,1989.

Pattis, R.E., "A Philosophy and Example of CS-l Programming
Projects", SIGCSE Bulletin,Vol. 22,No. 1, February 1990.

Volper, D. and Katz, Martin D., Introduction to Programming Using
Ada,Prentice-Hall,1990.

90

APPENDIX

COMPUTER SCIENCE I
(example Course Outline)

Topic 1: INTRODUCTION TO SOFTWARE SYSTEMS

objectives:
a. students will understand the basic organization of a digital

computer, the difference between hardware and software, and
the function of an operating system;

b. students will be able to use a moderate size realistic
software system;

c. students will be able to understand the system definition
statement and the user's manual for the software system under
study;

d. students will understand the purpose of test data and will be
able to create a set of the test data for the system under
study.

class activities:
a. discuss the organization of hardware/software systems and the

role of operating systems;
b. discuss a system definition statement and provide students

with the system definition and user's manual for the system
under study;

c. demonstrate the use of the system under study.

student activities:
a. read handout on introduction to computer systems;
b. construct several sets of test data and run each set on the

system under study
(e.g. use the SRS to dock the spaceship with the lab for

different sets of initial conditions.)

supporting material:
a. a handout on introduction to computer systems;
b. a system definition statement (problem definition, goals of

the system ,capabilities and constraints, user
characteristics, etc.);

c. a user's manual;
d. the software system (executable program)

Topic 2: TOP-LEVEL DESIGN OF A SOFTWARE SYSTEM

objectives:
a. the student will understand how the system definition

statement was used to carry out a top-level design of the
system under study;

b. the student will understand how a high-level language program
is organized (program header, declarative part, executable
part);

c. the student will understand the role of modules in the design

91

of software and know the meaning of "divide and conquer";
d. the student will understand the role of internal and external

documentation of a software system;
e. the student will understand the purpose of a compiler and

linker;
f. the student will be able to use a text editor;
g. the student will be able to modify an Ada source program, and

then compile and link it.

class activities:
a. discuss top-level design of software systems and illustrate

with the system definition statement and the Ada source code
for the system main program;

b. discuss internal and external documentation and illustrate
with the system user's manual and Ada source code for the
system main program;

c. discuss the use of a text editor;
d. discuss the purpose of a compiler and linker and illustrate

their use;

student activities:
a. read handouts on top-level design, the text editor, and the

use of the Ada compiler system;
b. use the text editor to modify the internal documentation of

the system main program;
(e.g. insert a description of each of the modules referenced

in the SRS.)
c. compile, link and run the system.

supporting material:
a. handouts on top-level design, the text editor, and the use of

the Ada compiler system;
b. a text editor;
c. the system definition statement and the Ada source code for

the system main program.

Topic 3: INTRODUCTION TO ABSTRACT DATA TYPES

objectives:
a. the student will be able to define the term abstract data type

(ADT);
b. the student will be familiar with the standard Ada data types;
c. the student will be familiar with literals, variable names and

named constants;
d. the student will understand how to declare and initialize

variables and declare subtypes and new data types;
e. the student will understand how to modify the system

parameters and analyze the effects of such modification;
f. the student will understand how Ada packages can be used to

declare data.

class activities: (to be completed during the project)

92

student activities:
a. read handouts on Ada data types and objects, and Ada packages;
b. modify the system parameters, recompile and link;

(e.g. in the SRS, one might modify the time increment used in
the simulation or vary the mass of the spaceship.)

c. run the modified system and analyze the results.

supporting materials:
a. the Ada source code for the system package used for data

declaration.
(the rest to be completed during the project)

Topic 4: INTRODUCTION TO SUBPROGRAMS

objectives:
a. the student will understand the subprogram concept;
b. the student will understand how subprograms are used to

modularize a program;
c. the student will understand subprogram calls and parameter

passing;
d. the student will understand Ada package specifications;
e. the student will be able to write a program to solve a problem

using the modules of the system being studied.

class activities: (to be completed during the project)

student activities:
a. using the system definition statement and the specification of

a system package of subprograms, the student will write a
program that implements the system;
(e.g. a new system, say the AFPS, could be introduced at this
point and the student could be asked to write the system main
program.)

(the rest to be completed during the project)

supporting material:
(to be completed during the project)

Topic 5: CONTROL STRUCTURES

objectives:
a. the student will know the purpose and understand how to use

the selection and iteration control structures;
(the rest to be completed during the project)

class activities:
(to be completed during the project)

student activities:
a. use control structures to extend the capabilities of the

system; I

93

(e.g. the AFPS could be modified to allow multiple flight
plans to be created.)

b. use control structures to write the code for the subprograms
in the systems under study and test them by "plugging" them
into the appropriate system.

94

PRESENTATION

INTRODUCTION

ERAU

ACS DEPARTMENT

ACS CURRICULUM

Ada
Software Engineering Across Curriculum
Software development manual
Project courses

B. PROBLEM STATEMENT

Bottom-up Curricula
Takes too long to show relevancy
Fails to teach "big picture" thinking
Requires paradigm reversal

PROPOSED SOLUTION

Top-Down Approach

Captures student interest early
Improves problem solving abilities
Is highly resource intensive
Ada is ideal for it.

General Approach
Instructional Strategy
Instructional Software Considerations
Course Content

PLAN TO INTEGRATE INTO THE CURRICULUM

ASSESSMENT AND EVALUATION OF OUTCOMES

95

J. BIOGRAPHICAL SKETCHES OF THE INVESTIGATORS

1.Dr. Thomas B. Hilbum, Professor of Computer Science, joined the ERAU faculty in 1973.
Prior to that he served in the United States Navy from 1962 until 1969. While in the Navy,

he taught courses in computer technology, inertial navigation and satellite navigation. He
received his Ph.D. in Mathematics from Louisiana Tech University in 1973 and has

completed graduate work in computer science and computer engineering at the University of
Central Florida and Rochester Institute of Technology.

Since arriving at ERAU, Dr. Hilburn has taught in both the Aviation Computer Science and
Mathematics Departments. He has received numerous awards for teaching and service to the
University. Dr. Hilburn is currently active in both the Association for Computing Machinery

and the Mathematical Association of America, and is a regular reviewer for Computing
Reviews. He has taught the Ada programming language in various courses and seminars for

the last four years. His current research interests include reusability and the use of Ada in
representing discrete mathematical structures. He has delivered several papers in this area in

recent years.

2.Dr. Iraj Hirmanpour, Professor of Computer Science, is the Chairman of the Aviation
Computer Science Department. In addition to ERAU he has served on the faculties of

Illinois State University and the University of North Carolina at Charlotte. He received an
M.E. degree in Computer Science from the University of Florida in 1970 and an Ed.D. in

Computer Science Education from Florida Atlantic University in 1980.

In addition to teaching, Dr. Hirmanpour has acted as a consultant on software development
methodology to numerous commercial firms and government agencies - both in the U.S. and
abroad. He has designed and presented workshops to professional groups and is a frequent

speaker at local professional meetings. His interests include information system modeling and
software engineering. He is a member of the ACM and IEEE's Software Engineering Group.

96

Using a Language Sensitive Editor and Ada
in Computer Science I-II

Dr. Dennis S. Martin
Department of Computing Sciences

University of Scranton
Scranton, PA 18510-4664
MARTIN@JAGUAR.UOFS.EDU

Design, documentation, and development--there is an ever
increasing gap between beginning programming skills and the skills
required of a professional programmer. It is essential that this
gap be narrowed and that a student start programming with careful
consideration of the philosophy and principles of software
engineering. In a sense, these concepts are "language-free" in
that the major attention must be placed on concept development
rather than language syntax. However, these concepts are really
not understood unless the student implements problem solutions in
a programming language, preferably a programming language that
directly supports these concepts. Based on several years of
experience, we have found the use of a Language Sensitive Editor
(LSE) to be exceptionally effective at the CSI-CSII level to teach
a language-independent approach to the concepts of programming.
The language Ada is an ideal companion to the LSE, providing the
direct language support needed.

A very important part of teaching concepts is to force the
student to articulate the design of their algorithms before the
code is written. The student must learn to develop useful though
not necessarily extensive internal documentation for a program.
For most students, documentation is, at best, an add-on after
otherwise finishing the program. The usual reasons given for this
behavior include not knowing what documentation is needed, not
knowing where the documentation is appropriate, and not wanting to
invest the amount of time necessary to type in the documentation.
In the past, we have attempted to solve this problem with written
documentation standards. The results were not impressive.

The key to good design is modularity including both procedural
abstraction and data abstraction. Actions and objects must be
accessible only through clearly defined interfaces which contain
formal specifications of the action or object. (See, for example,
Sommerville's text on Software Engineering.) Ada allows these
interfaces or specifications to be separately compiled. Students
can start by writing programs using already constructed units
having access only to well-documented specifications, not to the
body of the code. Later, students can learn design by having to
write, document, and compile a mainline and specifications of its
supporting units. We have found it desirable to have students hand
in such specifications reasonably soon after an assignment is given
but before the student has had a chance to fully write the program.
These can be evaluated for correct design and are effective in
verifying the high-level design before lower level coding is

97

started.

FORTRAN allows separately compiled functions and procedures
but uses only the body of code and does no type checking. Data
abstraction is difficult. Modula-2 allows separate compilation
units with definition and body (good object abstraction) but forces
a separately compiled procedure or function to be hidden within a
module confusing the ideas of data abstraction and procedural
abstraction. Standard Pascal does not support separate compilation
units so the suitability of a particular (non-standard) extension
varies.

We are using the VAX Language Sensitive Editor on a VAX/VMS
system. The LSE is user modifiable and we have chosen to customize
it to reflect our view of appropriate documentation style. As an
additional benefit, since the LSE uses Extended Backus-Naur Form
(EBNF) as its paradigm, it enhances the use of EBNF in describing
the syntax of a language.

At any time during development, a program source file contains
both code (terminals) and placeholders (non-terminals).
Placeholders have distinguishing delimiters, such as %()% or
%[]%, which are standard printable characters but syntactically
meaningless in the language. A new file contains only a root
placeholder such as %(compilation unit)%. A placeholder is either
a single element, such as an identifier, which must be typed over,
or a language element which is expanded to produce a template of
code and other placeholders. A placeholder is expanded by placing
the cursor on it and typing a control character.

The fill-in-the-blank format of the LSE has solved most of
the problems associated with documentation. When a student expands
the template for a procedure, function, or package, it contains the
names of the features that must be addressed. There is no question
about what is required or where it should go. Students do less
typing as the headings are already typed for them. Text
automatically wraps to the next line, properly indented. Students
are much less likely to hand in a program with insufficient or
nonexistent documentation. Faculty are much less likely to accept
such work.

At the simplest level, procedures and functions need a careful
explanation of input, processing, and output--what information is
available, what a program is supposed to accomplish, and the
results desired. This pre-condition, post-condition, and functional
description framework, with the input/output information supplied
by formal parameters and non-local referencing, forms the
specification of a function or procedure. It provides sufficient
information needed for its proper use.

The story for data abstraction is less clear. Functional
abstraction has a long history but understanding object-oriented
approaches is a continuing development in the field. Proper
documentation standards will also continue to develop. At this

98

time, we require a general overview of the object and a careful
description of what types, procedures, functions, and exceptions
should be available. Judicious use of private and limited private
types encapsulate the object itself properly. In CSI and CSII, it
is very appropriate to insist on exceptions (and exception
handling) and to add the concepts of generic objects and operations
as part of the conceptual development. These topics would be
almost impossible to treat at this level in any other language.

The appropriate style to comment a loop has caused us much
discussion. Ideally, students should have a trail of assertions
which lead from the pre-condition to the post-condition but this
is very difficult for beginning students and is too laborious to
be done in professional practice on a regular basis. We have
compromised by requiring that all loops have a weak form of "loop
invariant". While few students can give precise and correct
invariants at this level, they can articulate what the loop should
do and how it will be exited. This results in better designed and
implemented loops. Since Ada allows exiting a loop in the middle,
we consider the location of the loop invariant to be part of the
loop design process.

With an LSE, our students can concentrate on concepts rather
than syntax, writing better quality code with less need for
extensive syntactic corrections. Our original concern that
introducing this tool to beginning students might increase their
confusion or might produce proficient tool-users lacking
understanding has been found to be unwarranted. We believe that
an LSE should be used as early as possible to enhance student
learning of program design and documentation supporting good
design

As computer professionals, we need to use more computer-
intensive tools to enhance the learning of computer science. Good
tools, used properly, can be effective to help students learn to
be able to create good design and then to transform that into good
code, free from both syntactic and logical mistakes. The emphasis
in computer science must shift from learning syntax to software
engineering.

References.
Sommerville, Ian, Software Engineering, third edition,

Addision-Wesley, 1989.
Guide to VAX Language-Sensitive Editor and VAX Source Code

Analyzer, Digital Electronic Corporation, 1987.

99

This Page Intentionally Left Blank

100

NOTES

101

NOTES

102

NOTES

103

NOTES

104

NOTES

105

NOTES

106

NOTES

107

NOTES

108

